Polypeptide-PNP2 in Corn Cervi Pantotrichum Ameliorates Cognitive Impairment in Alzheimer's Disease Mice by Inhibiting Microglial Cell Activation.

Hongyan Pei, Zhongmie He, Rui Du, Yi Yang, Shasha Wu, Wenyan Li, Jian Sheng, Chenyang Han
Author Information
  1. Hongyan Pei: College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China. ORCID
  2. Zhongmie He: College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
  3. Rui Du: College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
  4. Yi Yang: Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
  5. Shasha Wu: Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
  6. Wenyan Li: Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
  7. Jian Sheng: The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China.
  8. Chenyang Han: The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China. 691513770@qq.com.

Abstract

We isolated a polypeptide PNP2 from Corn Cervi Pantotrichum and investigated its effect and mechanism on cognitive impairment in Alzheimer's disease (AD) mice. Morris water maze was used to assess the degree of cognitive impairment in mice. Histopathological changes were detected by H&E staining; the expressions of inflammatory cytokines were assayed by ELISA. Western blotting was employed to detect the protein expressions. PNP2 could improve cognitive impairment, central inflammatory response, and NLRP3 signaling in AD mice. In vitro experiments revealed that PNP2 could suppress the inflammatory response of microglial cells and reduce the activation of NLRP3 in microglial cells, while MCC950 could antagonize the effects of PNP2. polypeptide component PNP2 in Corn Cervi Pantotrichum can ameliorate central nervous inflammation and cognitive impairment in AD mice by suppressing NLRP3 signaling.

Keywords

References

  1. Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D et al (2024) Biomaterials-based anti-inflammatory treatment strategies for Alzheimer���s disease. Neural Regen Res 19(1):100���115 [DOI: 10.4103/1673-5374.374137]
  2. Jiang J, Pan H, Shen F, Tan Y, Chen S (2023) Ketogenic diet alleviates cognitive dysfunction and neuroinflammation in APP/PS1 mice via the Nrf2/HO-1 and NF-��B signaling pathways. Neural Regen Res 18(12):2767���2772 [DOI: 10.4103/1673-5374.373715]
  3. Asveda T, Talwar P, Ravanan P (2023) Exploring microglia and their phenomenal concatenation of stress responses in neurodegenerative disorders. Life Sci 1(328):121920 [DOI: 10.1016/j.lfs.2023.121920]
  4. Zhu J, Liu S, Zhang H, Zhao W, Ding J, Dai R, Xu K, He C et al (2023) Dynamic distribution of gut microbiota during Alzheimer���s disease progression in a mice model. APMIS 131(9):480���490 [DOI: 10.1111/apm.13339]
  5. Zhang Q, Yan Y (2023) The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer���s disease: a narrative review. Neural Regen Res 18(12):2582���2591 [DOI: 10.4103/1673-5374.373680]
  6. Son Y, Park HJ, Jeong YJ, Choi HD, Kim N, Lee HJ (2023) Long-term radiofrequency electromagnetic fields exposure attenuates cognitive dysfunction in 5��FAD mice by regulating microglial function. Neural Regen Res 18(11):2497���2503 [DOI: 10.4103/1673-5374.371379]
  7. Xia X, He X, Zhao T, Yang J, Bi Z, Fu Q, Liu J, Ao D et al (2023) Inhibiting mtDNA-STING-NLRP3/IL-1�� axis-mediated neutrophil infiltration protects neurons in Alzheimer���s disease. Cell Prolif 1:e13529
  8. Liu YY, Ding YF, Sui HJ, Liu W, Zhang ZQ, Li F (2023) Pilose antler (Cervus elaphus Linnaeus) polysaccharide and polypeptide extract inhibits bone resorption in high turnover type osteoporosis by stimulating the MAKP and MMP-9 signaling pathways. J Ethnopharmacol 25(304):116052 [DOI: 10.1016/j.jep.2022.116052]
  9. Ho TJ, Lin JH, Lin SZ, Tsai WT, Wu JR, Chen HP (2023) Isolation, identification, and characterization of bioactive peptides in human bone cells from tortoiseshell and deer antler gelatin. Int J Mol Sci 24(2):1759 [DOI: 10.3390/ijms24021759]
  10. Pei H, Du R, He Z, Yang Y, Wu S, Li W, Sheng J, Lv Y et al (2023) Protection of a novel velvet antler polypeptide PNP1 against cerebral ischemia-reperfusion injury. Int J Biol Macromol 13(247):125815 [DOI: 10.1016/j.ijbiomac.2023.125815]
  11. Ionescu MI (2020) Molecular docking investigation of the amantadine binding to the enzymes upregulated or downregulated in Parkinson���s disease. ADMET DMPK 8(2):149���175 [DOI: 10.5599/admet.854]
  12. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity[J]. J Intern Med 256(3):240���243 [DOI: 10.1111/j.1365-2796.2004.01388.x]
  13. Luck T, Luppa M, Briel S et al (2010) Incidence of mild cognitive impairment: a systematic review[J]. Dement Geriatr Cogn Disord 29(02):164���167 [DOI: 10.1159/000272424]
  14. Yuan-Yuan W, Xiong W, Lu T et al (2013) Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3�� and preservation of postsynaptic components. J Alzheimers Dis Jad 37(3):515���527 [DOI: 10.3233/JAD-130521]
  15. Han RW, Zhang RS, Chang M et al (2012) Reversal of scopolamine-induced spatial and recognition memory deficits in mice by novel multifunctional dimers bis-cognitins. Brain Res 1470(35):59���68 [DOI: 10.1016/j.brainres.2012.06.015]
  16. Gilbev A, Perezgonzalez JD (2012) Health benefits of deer and elk velvet antler supplements: a systematic renew of randomised controlled studies. N Z Med J 125(1367):80���86
  17. Li J, Yu J, Guo J, Liu J, Wan G, Wei X, Yang X, Shi J (2023) Nardostachys jatamansi and levodopa combination alleviates Parkinson���s disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways. Pharm Biol 61(1):1175���1185 [DOI: 10.1080/13880209.2023.2244176]
  18. Peng JF, Zhao XN, Zhang M, Li JY, Zhao CC, Wang SS, Wang JL, Shi H et al (2023) Punicalagin attenuates ventricular remodeling after acute myocardial infarction via regulating the NLRP3/caspase-1 pathway. Pharm Biol 61(1):963���972 [DOI: 10.1080/13880209.2023.2224403]
  19. Wan Y, Yu Y, Yu C, Luo J, Wen S, Shen L, Wei G, Hua Y (2023) Human umbilical cord mesenchymal stem cell exosomes alleviate acute kidney injury by inhibiting pyroptosis in rats and NRK-52E cells. Ren Fail 45(1):2221138 [DOI: 10.1080/0886022X.2023.2221138]
  20. Wu S, Wen F, Zhong X, Du W, Chen M, Wang J (2023) Astragaloside IV ameliorate acute alcohol-induced liver injury in mice via modulating gut microbiota and regulating NLRP3/caspase-1 signaling pathway. Ann Med 55(1):2216942 [DOI: 10.1080/07853890.2023.2216942]
  21. Lv C, Cheng T, Zhang B, Sun K, Lu K (2023) Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 45(1):2165103 [DOI: 10.1080/0886022X.2023.2165103]
  22. Chen X, Li W, Chang C (2023) NR3C2 mediates oxidised low-density lipoprotein-induced human coronary endothelial cells dysfunction via modulation of NLRP3 inflammasome activation. Autoimmunity 56(1):2189135 [DOI: 10.1080/08916934.2023.2189135]
  23. Xu C, Zhu J, Gong G, Guo L, Zhang Y, Zhang Z, Ma C (2023) Anthocyanin attenuates high salt-induced hypertension via inhibiting the hyperactivity of the sympathetic nervous system. Clin Exp Hypertens 45(1):2233717 [DOI: 10.1080/10641963.2023.2233717]
  24. Choi SB, Kwon S, Kim JH, Ahn NH, Lee JH, Yang SH (2023) The molecular mechanisms of neuroinflammation in Alzheimer���s disease, the consequence of neural cell death. Int J Mol Sci 24(14):11757 [DOI: 10.3390/ijms241411757]
  25. Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO (2023) The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 88:101954 [DOI: 10.1016/j.arr.2023.101954]
  26. Vontell RT, de Rivero Vaccari JP, Sun X, Gultekin SH, Bramlett HM, Dietrich WD, Keane RW (2023) Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer���s disease. Brain Pathol 33(4):e13142 [DOI: 10.1111/bpa.13142]
  27. Jain S, Saha P, Syamprasad NP, Panda SR, Rajdev B, Jannu AK, Sharma P, Naidu VGM (2023) Targeting TLR4/3 using chlorogenic acid ameliorates LPS+POLY I:C-induced acute respiratory distress syndrome via alleviating oxidative stress-mediated NLRP3/NF-��B axis. Clin Sci (Lond) 137(10):785���805 [DOI: 10.1042/CS20220625]

MeSH Term

Animals
Alzheimer Disease
Microglia
Cognitive Dysfunction
Mice
NLR Family, Pyrin Domain-Containing 3 Protein
Peptides
Male
Signal Transduction
Mice, Transgenic
Cytokines
Disease Models, Animal

Chemicals

NLR Family, Pyrin Domain-Containing 3 Protein
Peptides
Cytokines

Word Cloud

Created with Highcharts 10.0.0PNP2impairmentCornCerviPantotrichumcognitivemiceNLRP3ADinflammatorypolypeptideAlzheimer'sdiseaseexpressionscentralresponsesignalingmicroglialcellsCognitiveisolatedinvestigatedeffectmechanismMorriswatermazeusedassessdegreeHistopathologicalchangesdetectedH&EstainingcytokinesassayedELISAWesternblottingemployeddetectproteinimprovevitroexperimentsrevealedsuppressreduceactivationMCC950antagonizeeffectsPolypeptidecomponentcanamelioratenervousinflammationsuppressingPolypeptide-PNP2AmelioratesImpairmentDiseaseMiceInhibitingMicroglialCellActivationAlzheimer���sNeuroinflammation

Similar Articles

Cited By

No available data.