Deep graph contrastive learning model for drug-drug interaction prediction.

Zhenyu Jiang, Zhi Gong, Xiaopeng Dai, Hongyan Zhang, Pingjian Ding, Cong Shen
Author Information
  1. Zhenyu Jiang: College of Information and Intelligence, Hunan Agricultural University, Changsha, China.
  2. Zhi Gong: School of Computer Science and Engineering, Hunan University of Information Technology, Changsha, China.
  3. Xiaopeng Dai: College of Information and Intelligence, Hunan Agricultural University, Changsha, China. ORCID
  4. Hongyan Zhang: College of Information and Intelligence, Hunan Agricultural University, Changsha, China.
  5. Pingjian Ding: School of Computer Science, University of South China, Hengyang, China.
  6. Cong Shen: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. ORCID

Abstract

Drug-drug interaction (DDI) is the combined effects of multiple drugs taken together, which can either enhance or reduce each other's efficacy. Thus, drug interaction analysis plays an important role in improving treatment effectiveness and patient safety. It has become a new challenge to use computational methods to accelerate drug interaction time and reduce its cost-effectiveness. The existing methods often do not fully explore the relationship between the structural information and the functional information of drug molecules, resulting in low prediction accuracy for drug interactions, poor generalization, and other issues. In this paper, we propose a novel method, which is a deep graph contrastive learning model for drug-drug interaction prediction (DeepGCL for brevity). DeepGCL incorporates a contrastive learning component to enhance the consistency of information between different views (molecular structure and interaction network), which means that the DeepGCL model predicts drug interactions by integrating molecular structure features and interaction network topology features. Experimental results show that DeepGCL achieves better performance than other methods in all datasets. Moreover, we conducted many experiments to analyze the necessity of each component of the model and the robustness of the model, which also showed promising results. The source code of DeepGCL is freely available at https://github.com/jzysj/DeepGCL.

References

  1. Sci Transl Med. 2012 Mar 14;4(125):125ra31 [PMID: 22422992]
  2. Bioinformatics. 2021 Sep 29;37(18):2988-2995 [PMID: 33769494]
  3. Biomed Res Int. 2014;2014:196858 [PMID: 25147789]
  4. Chem Sci. 2022 Jul 13;13(29):8693-8703 [PMID: 35974769]
  5. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 33940598]
  6. Bioinformatics. 2015 Jun 15;31(12):2007-16 [PMID: 25667546]
  7. BMC Bioinformatics. 2021 Jul 24;22(1):385 [PMID: 34303360]
  8. Bioinformatics. 2021 Sep 9;37(17):2651-2658 [PMID: 33720331]
  9. BMC Bioinformatics. 2019 Dec 18;20(1):726 [PMID: 31852427]
  10. BMC Bioinformatics. 2022 Jun 10;23(1):224 [PMID: 35689200]
  11. PLoS Comput Biol. 2013;9(9):e1003226 [PMID: 24068907]
  12. KDD. 2016 Aug;2016:855-864 [PMID: 27853626]
  13. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 33951725]
  14. Comput Struct Biotechnol J. 2024 Feb 15;23:1016-1025 [PMID: 38425487]
  15. Br J Clin Pharmacol. 2021 Nov;87(11):4051-4100 [PMID: 33769581]
  16. Front Pharmacol. 2022 Jan 28;12:814858 [PMID: 35153767]
  17. Cancers (Basel). 2021 Jan 07;13(2): [PMID: 33430223]
  18. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34671814]
  19. Molecules. 2022 Mar 03;27(5): [PMID: 35268770]
  20. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4304-E4311 [PMID: 29666228]
  21. Sci Rep. 2022 Sep 16;12(1):15590 [PMID: 36114278]
  22. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35667078]
  23. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34571537]
  24. iScience. 2023 Sep 22;26(10):108020 [PMID: 37854693]
  25. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  26. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36592061]
  27. Interdiscip Sci. 2021 Jun;13(2):299-311 [PMID: 33611781]
  28. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34695842]

MeSH Term

Drug Interactions
Deep Learning
Humans

Word Cloud

Created with Highcharts 10.0.0interactiondrugmodelDeepGCLmethodsinformationpredictioncontrastivelearningenhancereduceinteractionsgraphdrug-drugcomponentmolecularstructurenetworkfeaturesresultsDrug-drugDDIcombinedeffectsmultipledrugstakentogethercaneitherother'sefficacyThusanalysisplaysimportantroleimprovingtreatmenteffectivenesspatientsafetybecomenewchallengeusecomputationalacceleratetimecost-effectivenessexistingoftenfullyexplorerelationshipstructuralfunctionalmoleculesresultinglowaccuracypoorgeneralizationissuespaperproposenovelmethoddeepbrevityincorporatesconsistencydifferentviewsmeanspredictsintegratingtopologyExperimentalshowachievesbetterperformancedatasetsMoreoverconductedmanyexperimentsanalyzenecessityrobustnessalsoshowedpromisingsourcecodefreelyavailablehttps://githubcom/jzysj/DeepGCLDeep

Similar Articles

Cited By

No available data.