Insights into Predicting Tooth Extraction from Panoramic Dental Images: Artificial Intelligence vs. Dentists.

Ila Motmaen, Kunpeng Xie, Leon Schönbrunn, Jeff Berens, Kim Grunert, Anna Maria Plum, Johannes Raufeisen, André Ferreira, Alexander Hermans, Jan Egger, Frank Hölzle, Daniel Truhn, Behrus Puladi
Author Information
  1. Ila Motmaen: Department of Oral and Maxillofacial Surgery, University Hospital Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany. ORCID
  2. Kunpeng Xie: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  3. Leon Schönbrunn: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  4. Jeff Berens: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  5. Kim Grunert: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  6. Anna Maria Plum: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  7. Johannes Raufeisen: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  8. André Ferreira: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  9. Alexander Hermans: Visual Computing Institute, Computer Science and Natural Sciences, RWTH Aachen University, 52074, Aachen, Germany. ORCID
  10. Jan Egger: Institute for Artificial Intelligence in Medicine, Essen University Hospital, 45147, Essen, Germany. ORCID
  11. Frank Hölzle: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. ORCID
  12. Daniel Truhn: Department of Diagnostic and Interventional Radiology, RWTH Aachen University, 52074, Aachen, Germany. ORCID
  13. Behrus Puladi: Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany. bpuladi@ukaachen.de. ORCID

Abstract

OBJECTIVES: Tooth extraction is one of the most frequently performed medical procedures. The indication is based on the combination of clinical and radiological examination and individual patient parameters and should be made with great care. However, determining whether a tooth should be extracted is not always a straightforward decision. Moreover, visual and cognitive pitfalls in the analysis of radiographs may lead to incorrect decisions. Artificial intelligence (AI) could be used as a decision support tool to provide a score of tooth extractability.
MATERIAL AND METHODS: Using 26,956 single teeth images from 1,184 panoramic radiographs (PANs), we trained a ResNet50 network to classify teeth as either extraction-worthy or preservable. For this purpose, teeth were cropped with different margins from PANs and annotated. The usefulness of the AI-based classification as well that of dentists was evaluated on a test dataset. In addition, the explainability of the best AI model was visualized via a class activation mapping using CAMERAS.
RESULTS: The ROC-AUC for the best AI model to discriminate teeth worthy of preservation was 0.901 with 2% margin on dental images. In contrast, the average ROC-AUC for dentists was only 0.797. With a 19.1% tooth extractions prevalence, the AI model's PR-AUC was 0.749, while the dentist evaluation only reached 0.589.
CONCLUSION: AI models outperform dentists/specialists in predicting tooth extraction based solely on X-ray images, while the AI performance improves with increasing contextual information.
CLINICAL RELEVANCE: AI could help monitor at-risk teeth and reduce errors in indications for extractions.

Keywords

References

  1. BJR Open. 2018 Nov 23;1(1):20180017 [PMID: 33178913]
  2. Phys Med. 2021 Mar;83:1-8 [PMID: 33657513]
  3. J Am Dent Assoc. 2010 Feb;141(2):195-203 [PMID: 20123879]
  4. Periodontol 2000. 2008;47:27-50 [PMID: 18412572]
  5. J Am Geriatr Soc. 2004 Jun;52(6):880-5 [PMID: 15161450]
  6. Int Dent J. 2022 Feb;72(1):52-57 [PMID: 33648772]
  7. Aust Dent J. 2012 Mar;57 Suppl 1:40-5 [PMID: 22376096]
  8. Arch Pathol Lab Med. 2017 Sep;141(9):1267-1275 [PMID: 28557614]
  9. J Clin Med. 2020 Jun 12;9(6): [PMID: 32545602]
  10. Oral Radiol. 2021 Jul;37(3):487-493 [PMID: 32948938]
  11. BMC Med Imaging. 2021 Aug 13;21(1):124 [PMID: 34388975]
  12. Dentomaxillofac Radiol. 2020 Dec 01;49(8):20200185 [PMID: 32574113]
  13. Dentomaxillofac Radiol. 2019 May;48(4):20180051 [PMID: 30835551]
  14. J Endod. 2019 Jul;45(7):917-922.e5 [PMID: 31160078]
  15. Semin Ultrasound CT MR. 2020 Feb;41(1):74-84 [PMID: 31964496]
  16. Sci Rep. 2021 Jun 15;11(1):12609 [PMID: 34131266]
  17. J Clin Med. 2021 Jun 11;10(12): [PMID: 34208024]
  18. Diagnostics (Basel). 2020 Jun 24;10(6): [PMID: 32599942]
  19. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):635-642 [PMID: 31992524]
  20. Comput Methods Programs Biomed. 2022 Nov;226:107161 [PMID: 36228495]
  21. Imaging Sci Dent. 2023 Dec;53(4):271-281 [PMID: 38174035]
  22. Clin Oral Investig. 2017 Dec;21(9):2761-2770 [PMID: 28233170]
  23. Dentomaxillofac Radiol. 2024 Jan 11;53(1):32-42 [PMID: 38214940]
  24. J Periodontol. 2009 Mar;80(3):476-91 [PMID: 19254132]
  25. J Arthroplasty. 2018 Aug;33(8):2358-2361 [PMID: 29656964]
  26. IEEE Trans Med Imaging. 1995;14(4):711-8 [PMID: 18215875]
  27. Int J Comput Assist Radiol Surg. 2021 Mar;16(3):415-422 [PMID: 33547985]
  28. Sci Rep. 2022 Apr 12;12(1):6088 [PMID: 35413983]
  29. Sci Rep. 2021 Jan 21;11(1):1954 [PMID: 33479379]
  30. Med Image Anal. 2021 Aug;72:102125 [PMID: 34171622]
  31. Sci Rep. 2023 Dec 12;13(1):22022 [PMID: 38086921]
  32. J Endod. 2017 Sep;43(9):1579-1586 [PMID: 28734650]
  33. Aust Dent J. 2018 Mar;63 Suppl 1:S11-S18 [PMID: 29574811]
  34. J Law Biosci. 2014 Apr 28;1(2):202-208 [PMID: 27774161]
  35. J Dent. 2021 Dec;115:103864 [PMID: 34715247]
  36. Diagnostics (Basel). 2021 Sep 13;11(9): [PMID: 34574013]
  37. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Oct;128(4):424-430 [PMID: 31320299]
  38. Nat Med. 2020 Sep;26(9):1320-1324 [PMID: 32908275]
  39. Infect Immun. 2020 Jun 22;88(7): [PMID: 32312765]
  40. Int J Environ Res Public Health. 2020 Apr 09;17(7): [PMID: 32283707]
  41. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021 Aug;132(2):225-238 [PMID: 33303419]

MeSH Term

Humans
Radiography, Panoramic
Tooth Extraction
Artificial Intelligence
Dentists
Female
Male
Adult

Word Cloud

Created with Highcharts 10.0.0AIteethtooth0ToothArtificialimagesextractionbaseddecisionradiographsPANsdentistsbestmodelROC-AUCextractionsExtractionIntelligenceOBJECTIVES:onefrequentlyperformedmedicalproceduresindicationcombinationclinicalradiologicalexaminationindividualpatientparametersmadegreatcareHoweverdeterminingwhetherextractedalwaysstraightforwardMoreovervisualcognitivepitfallsanalysismayleadincorrectdecisionsintelligenceusedsupporttoolprovidescoreextractabilityMATERIALANDMETHODS:Using26956single1184panoramictrainedResNet50networkclassifyeitherextraction-worthypreservablepurposecroppeddifferentmarginsannotatedusefulnessAI-basedclassificationwellevaluatedtestdatasetadditionexplainabilityvisualizedviaclassactivationmappingusingCAMERASRESULTS:discriminateworthypreservation9012%margindentalcontrastaverage797191%prevalencemodel'sPR-AUC749dentistevaluationreached589CONCLUSION:modelsoutperformdentists/specialistspredictingsolelyX-rayperformanceimprovesincreasingcontextualinformationCLINICALRELEVANCE:helpmonitorat-riskreduceerrorsindicationsInsightsPredictingPanoramicDentalImages:vsDentistsDecisionSupportTechniquesDeepLearningDentistrySurgeryOral

Similar Articles

Cited By