Uncovering COVID-19 transmission tree: identifying traced and untraced infections in an infection network.

Hyunwoo Lee, Hayoung Choi, Hyojung Lee, Sunmi Lee, Changhoon Kim
Author Information
  1. Hyunwoo Lee: Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea.
  2. Hayoung Choi: Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea.
  3. Hyojung Lee: Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea.
  4. Sunmi Lee: Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea.
  5. Changhoon Kim: Department of Preventive Medicine, College of Medicine, Pusan National University, Busan, Republic of Korea.

Abstract

Introduction: This paper presents a comprehensive analysis of COVID-19 transmission dynamics using an infection network derived from epidemiological data in South Korea, covering the period from January 3, 2020, to July 11, 2021. The network illustrates infector-infectee relationships and provides invaluable insights for managing and mitigating the spread of the disease. However, significant missing data hinder conventional analysis of such networks from epidemiological surveillance.
Methods: To address this challenge, this article suggests a novel approach for categorizing individuals into four distinct groups, based on the classification of their infector or infectee status as either traced or untraced cases among all confirmed cases. The study analyzes the changes in the infection networks among untraced and traced cases across five distinct periods.
Results: The four types of cases emphasize the impact of various factors, such as the implementation of public health strategies and the emergence of novel COVID-19 variants, which contribute to the propagation of COVID-19 transmission. One of the key findings is the identification of notable transmission patterns in specific age groups, particularly in those aged 20-29, 40-69, and 0-9, based on the four type classifications. Furthermore, we develop a novel real-time indicator to assess the potential for infectious disease transmission more effectively. By analyzing the lengths of connected components, this indicator facilitates improved predictions and enables policymakers to proactively respond, thereby helping to mitigate the effects of the pandemic on global communities.
Conclusion: This study offers a novel approach to categorizing COVID-19 cases, provides insights into transmission patterns, and introduces a real-time indicator for better assessment and management of the disease transmission, thereby supporting more effective public health interventions.

Keywords

References

  1. Science. 2020 May 8;368(6491): [PMID: 32234805]
  2. medRxiv. 2020 Mar 27;: [PMID: 32511620]
  3. Bioinformatics. 2012 Jan 1;28(1):112-8 [PMID: 22039212]
  4. J Econom. 2021 Jan;220(1):106-129 [PMID: 32921876]
  5. Lancet Public Health. 2020 Aug;5(8):e452-e459 [PMID: 32682487]
  6. BMC Infect Dis. 2021 May 26;21(1):485 [PMID: 34039296]
  7. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10;41(4):476-479 [PMID: 32125128]
  8. PLoS One. 2021 Jul 19;16(7):e0254403 [PMID: 34280197]
  9. Inf Sci (N Y). 2022 Aug;607:418-439 [PMID: 35693835]
  10. Epidemiol Health. 2022;44:e2022106 [PMID: 36397242]
  11. Chaos. 2023 Jan;33(1):013107 [PMID: 36725660]
  12. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  13. Int J Infect Dis. 2020 Jun;95:391-398 [PMID: 32339715]
  14. Sci Rep. 2021 Apr 21;11(1):8605 [PMID: 33883590]
  15. J Epidemiol Community Health. 2020 Oct;74(10):861-866 [PMID: 32576605]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 [PMID: 12241447]
  17. Science. 2021 Mar 26;371(6536): [PMID: 33531384]
  18. Socius. 2021 Mar 9;7:23780231211000171 [PMID: 34192147]
  19. Lancet Glob Health. 2020 Apr;8(4):e488-e496 [PMID: 32119825]
  20. Lancet Infect Dis. 2020 Aug;20(8):911-919 [PMID: 32353347]
  21. Front Public Health. 2023 Jun 30;11:1185854 [PMID: 37457248]
  22. J Biomed Inform. 2023 Mar;139:104295 [PMID: 36716983]
  23. PLoS Comput Biol. 2017 Sep 12;13(9):e1005697 [PMID: 28898249]
  24. Nature. 2020 Aug;584(7821):420-424 [PMID: 32674112]
  25. Epidemics. 2019 Dec;29:100356 [PMID: 31624039]
  26. Lancet Digit Health. 2022 Aug;4(8):e573-e583 [PMID: 35868812]
  27. Int J Infect Dis. 2021 May;106:363-369 [PMID: 33609772]
  28. PLoS Comput Biol. 2018 Dec 7;14(12):e1006638 [PMID: 30532206]
  29. Postgrad Med J. 2020 Jul;96(1137):399-402 [PMID: 32366457]
  30. Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22684-22689 [PMID: 32839315]
  31. Nat Med. 2020 Aug;26(8):1205-1211 [PMID: 32546824]
  32. Sci Rep. 2021 Apr 21;11(1):8581 [PMID: 33883601]
  33. Emerg Infect Dis. 2006 Nov;12(11):1671-81 [PMID: 17283616]
  34. Lancet Infect Dis. 2020 Sep;20(9):1025-1033 [PMID: 32445710]
  35. J R Soc Interface. 2005 Sep 22;2(4):295-307 [PMID: 16849187]
  36. Int J Environ Res Public Health. 2022 Mar 29;19(7): [PMID: 35409740]
  37. J Theor Biol. 2005 Jan 7;232(1):71-81 [PMID: 15498594]
  38. Clin Rev Allergy Immunol. 2023 Feb;64(1):90-107 [PMID: 35044620]
  39. J Med Internet Res. 2020 May 5;22(5):e19540 [PMID: 32353827]
  40. J Am Med Inform Assoc. 2020 Aug 1;27(8):1259-1267 [PMID: 32458963]
  41. Int J Infect Dis. 2020 Sep;98:51-58 [PMID: 32579906]

MeSH Term

Humans
COVID-19
Republic of Korea
Adult
Middle Aged
SARS-CoV-2
Aged
Adolescent
Child
Contact Tracing
Child, Preschool
Infant
Infant, Newborn
Young Adult
Female
Male

Word Cloud

Created with Highcharts 10.0.0transmissionCOVID-19infectioncasesnetworknoveluntraceddiseasefourtracedindicatoranalysisepidemiologicaldataprovidesinsightsnetworksapproachcategorizingdistinctgroupsbasedamongstudypublichealthpatternsreal-timetherebyIntroduction:paperpresentscomprehensivedynamicsusingderivedSouthKoreacoveringperiodJanuary32020July112021illustratesinfector-infecteerelationshipsinvaluablemanagingmitigatingspreadHoweversignificantmissinghinderconventionalsurveillanceMethods:addresschallengearticlesuggestsindividualsclassificationinfectorinfecteestatuseitherconfirmedanalyzeschangesacrossfiveperiodsResults:typesemphasizeimpactvariousfactorsimplementationstrategiesemergencevariantscontributepropagationOnekeyfindingsidentificationnotablespecificageparticularlyaged20-2940-690-9typeclassificationsFurthermoredevelopassesspotentialinfectiouseffectivelyanalyzinglengthsconnectedcomponentsfacilitatesimprovedpredictionsenablespolicymakersproactivelyrespondhelpingmitigateeffectspandemicglobalcommunitiesConclusion:offersintroducesbetterassessmentmanagementsupportingeffectiveinterventionsUncoveringtree:identifyinginfectionscontacttracingreproductionnumber

Similar Articles

Cited By

No available data.