Green Synthesis of Silver Nanoparticles Mediated by Peel Waste: An Effective Additive for Natural Rubber Latex Nanofibers Enhancement.

Talia S Echegaray-Ugarte, Andrea L Cespedes-Loayza, Jacqueline L Cruz-Loayza, Luis A Huayapa-Yucra, Isemar Cruz, Júlio Cesar de Carvalho, Luis Daniel Goyzueta-Mamani
Author Information
  1. Talia S Echegaray-Ugarte: Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru.
  2. Andrea L Cespedes-Loayza: Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru.
  3. Jacqueline L Cruz-Loayza: Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru.
  4. Luis A Huayapa-Yucra: Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru.
  5. Isemar Cruz: Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru.
  6. Júlio Cesar de Carvalho: Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil. ORCID
  7. Luis Daniel Goyzueta-Mamani: Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru. ORCID

Abstract

Pomegranate waste poses an environmental challenge in Arequipa. Simultaneously, interest in sustainable materials like natural rubber latex (NRL) is growing, with Peruvian communities offering a promising source. This study explores the green synthesis of silver nanoparticles (AgNPs) using pomegranate peel extract and their incorporation into NRL nanofibers for enhanced functionalities. An eco-friendly process utilized silver nitrate and pomegranate peel extract as a reducing and capping agent to synthesize AgNPs. The resulting AgNPs and NRL/AgNPs nanofibers were characterized using imaging and spectroscopic techniques such as UV-vis, TGA, FTIR, XRD, Raman, SEM, and DLS. Green-synthesized AgNPs were spherical and crystalline, with an average diameter of 59 nm. They showed activity against , , , and (IC50: 51.32, 4.87, 27.72, and 69.72 µg/mL, respectively). NRL and NRL/AgNPs nanofibers (300-373 nm diameter) were successfully fabricated. The composite nanofibers exhibited antibacterial activity against and . This study presents a sustainable approach by utilizing pomegranate waste for AgNP synthesis and NRL sourced from Peruvian communities. Integrating AgNPs into NRL nanofibers produced composites with antimicrobial properties. This work has potential applications in smart textiles, biomedical textiles, and filtration materials where sustainability and antimicrobial functionality are crucial.

Keywords

References

  1. Int J Mol Sci. 2020 Feb 22;21(4): [PMID: 32098417]
  2. Micron. 2014 Jan;56:54-62 [PMID: 24210247]
  3. Polymers (Basel). 2022 Jul 28;14(15): [PMID: 35956563]
  4. J Ayurveda Integr Med. 2020 Jan - Mar;11(1):37-44 [PMID: 30120058]
  5. Biomicrofluidics. 2011 Mar 30;5(1):13403 [PMID: 21522493]
  6. ACS Appl Mater Interfaces. 2022 Dec 14;14(49):55155-55166 [PMID: 36468489]
  7. Food Chem. 2018 Sep 30;261:75-86 [PMID: 29739608]
  8. ACS Omega. 2021 Apr 08;6(15):10180-10186 [PMID: 34056172]
  9. Sci Rep. 2021 Oct 26;11(1):21047 [PMID: 34702916]
  10. Phys Rev Lett. 1987 Jan 19;58(3):274-277 [PMID: 10034887]
  11. Bioresour Technol. 2018 Oct;266:322-334 [PMID: 29982054]
  12. Sci Rep. 2023 Nov 9;13(1):19469 [PMID: 37945578]
  13. Iran J Pharm Res. 2011 Summer;10(3):519-24 [PMID: 24250384]
  14. Foods. 2021 Mar 19;10(3): [PMID: 33808709]
  15. World J Microbiol Biotechnol. 2019 May 27;35(6):88 [PMID: 31134435]
  16. Int J Biol Macromol. 2015 Nov;81:768-77 [PMID: 26318667]
  17. J Genet Eng Biotechnol. 2016 Dec;14(2):311-317 [PMID: 30647629]
  18. Nanomaterials (Basel). 2018 Nov 17;8(11): [PMID: 30453600]
  19. Heliyon. 2019 Apr 28;5(4):e01575 [PMID: 31183435]
  20. J Phys Chem B. 2005 Mar 24;109(11):5012-20 [PMID: 16863161]
  21. J Nanobiotechnology. 2021 Apr 27;19(1):120 [PMID: 33906693]
  22. Biotechnol Lett. 2016 Jun;38(6):1015-9 [PMID: 26969604]
  23. Int J Nanomedicine. 2015 Jun 29;10:4203-22 [PMID: 26170659]
  24. R Soc Open Sci. 2020 Jul 22;7(7):200065 [PMID: 32874618]
  25. Anal Chim Acta. 2007 Aug 6;597(2):179-86 [PMID: 17683728]
  26. ChemMedChem. 2007 Jan;2(1):129-36 [PMID: 17075952]
  27. Food Chem. 2020 Nov 15;330:127172 [PMID: 32531634]
  28. Sci Rep. 2024 Apr 26;14(1):9568 [PMID: 38671168]
  29. Ultramicroscopy. 2017 Nov;182:179-190 [PMID: 28692935]
  30. Food Chem. 2015 May 1;174:417-25 [PMID: 25529700]
  31. Molecules. 2023 Jun 18;28(12): [PMID: 37375393]
  32. Int J Nanomedicine. 2012;7:483-96 [PMID: 22334779]
  33. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Nov 11;132:743-50 [PMID: 24956490]

Grants

  1. This research was funded by the program PROCIENCIA from CONCYTEC grant number 108-2021-FONDECYT Esquema E041-2021-02./Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica

Word Cloud

Created with Highcharts 10.0.0NRLAgNPsnanofiberssynthesissilverpomegranateactivitywastesustainablematerialsnaturalrubberlatexPeruviancommunitiesstudygreennanoparticlesusingpeelextractNRL/AgNPsdiameternm72antibacterialantimicrobialtextilesPomegranateposesenvironmentalchallengeArequipaSimultaneouslyinterestlikegrowingofferingpromisingsourceexploresincorporationenhancedfunctionalitieseco-friendlyprocessutilizednitratereducingcappingagentsynthesizeresultingcharacterizedimagingspectroscopictechniquesUV-visTGAFTIRXRDRamanSEMDLSGreen-synthesizedsphericalcrystallineaverage59showedIC50:51324872769µg/mLrespectively300-373successfullyfabricatedcompositeexhibitedpresentsapproachutilizingAgNPsourcedIntegratingproducedcompositespropertiesworkpotentialapplicationssmartbiomedicalfiltrationsustainabilityfunctionalitycrucialGreenSynthesisSilverNanoparticlesMediatedPeelWaste:EffectiveAdditiveNaturalRubberLatexNanofibersEnhancementPunicagranatum

Similar Articles

Cited By