Development of a Low-Cost Markerless Optical Motion Capture System for Gait Analysis and Anthropometric Parameter Quantification.

Laura Alejandra Espitia-Mora, Manuel Andr��s V��lez-Guerrero, Mauro Callejas-Cuervo
Author Information
  1. Laura Alejandra Espitia-Mora: Software Research Group, Universidad Pedag��gica y Tecnol��gica de Colombia, Tunja 150002, Colombia. ORCID
  2. Manuel Andr��s V��lez-Guerrero: Software Research Group, Universidad Pedag��gica y Tecnol��gica de Colombia, Tunja 150002, Colombia. ORCID
  3. Mauro Callejas-Cuervo: Software Research Group, Universidad Pedag��gica y Tecnol��gica de Colombia, Tunja 150002, Colombia. ORCID

Abstract

Technological advancements have expanded the range of methods for capturing human body motion, including solutions involving inertial sensors (IMUs) and optical alternatives. However, the rising complexity and costs associated with commercial solutions have prompted the exploration of more cost-effective alternatives. This paper presents a markerless optical motion capture system using a RealSense depth camera and intelligent computer vision algorithms. It facilitates precise posture assessment, the real-time calculation of joint angles, and acquisition of subject-specific anthropometric data for gait analysis. The proposed system stands out for its simplicity and affordability in comparison to complex commercial solutions. The gathered data are stored in comma-separated value (CSV) files, simplifying subsequent analysis and data mining. Preliminary tests, conducted in controlled laboratory environments and employing a commercial MEMS-IMU system as a reference, revealed a maximum relative error of 7.6% in anthropometric measurements, with a maximum absolute error of 4.67 cm at average height. Stride length measurements showed a maximum relative error of 11.2%. Static joint angle tests had a maximum average error of 10.2%, while dynamic joint angle tests showed a maximum average error of 9.06%. The proposed optical system offers sufficient accuracy for potential application in areas such as rehabilitation, sports analysis, and entertainment.

Keywords

References

  1. Proc Inst Mech Eng H. 2019 Sep;233(9):938-947 [PMID: 31250706]
  2. Sensors (Basel). 2021 Aug 19;21(16): [PMID: 34451032]
  3. Proc Inst Mech Eng H. 2023 May;237(5):628-641 [PMID: 36950949]
  4. Sensors (Basel). 2022 Jan 21;22(3): [PMID: 35161570]
  5. J Med Syst. 2018 Feb 5;42(3):53 [PMID: 29404692]
  6. Sensors (Basel). 2021 Dec 15;21(24): [PMID: 34960464]
  7. PeerJ Comput Sci. 2021 Nov 19;7:e764 [PMID: 34901426]
  8. PeerJ. 2022 Feb 25;10:e12995 [PMID: 35237469]
  9. Sensors (Basel). 2019 Nov 08;19(22): [PMID: 31717471]
  10. Sci Data. 2021 Jan 18;8(1):13 [PMID: 33462240]
  11. Sensors (Basel). 2020 Nov 24;20(23): [PMID: 33255511]
  12. IEEE Trans Neural Syst Rehabil Eng. 2020 Aug;28(8):1817-1824 [PMID: 32746313]
  13. Sensors (Basel). 2016 Sep 23;16(10): [PMID: 27669260]
  14. Sci Rep. 2021 Jun 14;11(1):12486 [PMID: 34127718]
  15. Sensors (Basel). 2020 Sep 23;20(19): [PMID: 32977436]
  16. Micromachines (Basel). 2018 Aug 17;9(8): [PMID: 30424344]
  17. Gait Posture. 2019 Feb;68:193-200 [PMID: 30500731]
  18. Sensors (Basel). 2019 Jan 11;19(2): [PMID: 30642017]
  19. Sci Rep. 2021 Jul 7;11(1):14065 [PMID: 34234255]
  20. Sensors (Basel). 2022 Mar 04;22(5): [PMID: 35271158]
  21. Entropy (Basel). 2022 Dec 22;25(1): [PMID: 36673161]
  22. IEEE Trans Neural Syst Rehabil Eng. 2019 Mar;27(3):465-476 [PMID: 30703033]
  23. IEEE J Transl Eng Health Med. 2018 Oct 12;6:4100313 [PMID: 30456001]
  24. Sensors (Basel). 2018 Aug 07;18(8): [PMID: 30087290]
  25. Sports Med Open. 2018 Jun 05;4(1):24 [PMID: 29869300]
  26. Sensors (Basel). 2021 Jun 29;21(13): [PMID: 34209582]
  27. IEEE J Transl Eng Health Med. 2018 Jan 25;6:2800210 [PMID: 29456898]
  28. J Biomech. 2023 Jun;155:111645 [PMID: 37216895]

Grants

  1. Project number SGI 3474/Universidad Pedag��gica y Tecnol��gica de Colombia

MeSH Term

Humans
Algorithms
Anthropometry
Gait
Gait Analysis
Male
Biomechanical Phenomena
Adult
Motion Capture

Word Cloud

Created with Highcharts 10.0.0maximumerroropticalsystemanalysismotionsolutionscommercialjointdatatestsaveragesensorsalternativescaptureRealSensedepthcomputervisionanthropometricproposedrelativemeasurementsshowed2%anglerehabilitationsportsentertainmentTechnologicaladvancementsexpandedrangemethodscapturinghumanbodyincludinginvolvinginertialIMUsHoweverrisingcomplexitycostsassociatedpromptedexplorationcost-effectivepaperpresentsmarkerlessusingcameraintelligentalgorithmsfacilitatesprecisepostureassessmentreal-timecalculationanglesacquisitionsubject-specificgaitstandssimplicityaffordabilitycomparisoncomplexgatheredstoredcomma-separatedvalueCSVfilessimplifyingsubsequentminingPreliminaryconductedcontrolledlaboratoryenvironmentsemployingMEMS-IMUreferencerevealed76%absolute467cmheightStridelength11Static10dynamic906%offerssufficientaccuracypotentialapplicationareasDevelopmentLow-CostMarkerlessOpticalMotionCaptureSystemGaitAnalysisAnthropometricParameterQuantificationartificialintelligencelowerlimbs

Similar Articles

Cited By (2)