ScnML models single-cell transcriptome to predict spinal cord neuronal cell status.

Lijia Liu, Yuxuan Huang, Yuan Zheng, Yihan Liao, Siyuan Ma, Qian Wang
Author Information
  1. Lijia Liu: School of Recreation and Community Sport, Capital University of Physical Education and Sports, Beijing, China.
  2. Yuxuan Huang: Department of Neuroscience in the Behavioral Sciences, Duke University and Duke Kunshan University, Suzhou, Jiangsu, China.
  3. Yuan Zheng: Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Luqiao, China.
  4. Yihan Liao: Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Luqiao, China.
  5. Siyuan Ma: School of Recreation and Community Sport, Capital University of Physical Education and Sports, Beijing, China.
  6. Qian Wang: Department of Neurology, The First Hospital of Tsinghua University, Beijing, China.

Abstract

Injuries to the spinal cord nervous system often result in permanent loss of sensory, motor, and autonomic functions. Accurately identifying the cellular state of spinal cord nerves is extremely important and could facilitate the development of new therapeutic and rehabilitative strategies. Existing experimental techniques for identifying the development of spinal cord nerves are both labor-intensive and costly. In this study, we developed a machine learning predictor, ScnML, for predicting subpopulations of spinal cord nerve cells as well as identifying marker genes. The prediction performance of ScnML was evaluated on the training dataset with an accuracy of 94.33%. Based on XGBoost, ScnML on the test dataset achieved 94.08% 94.24%, 94.26%, and 94.24% accuracies with precision, recall, and F1-measure scores, respectively. Importantly, ScnML identified new significant genes through model interpretation and biological landscape analysis. ScnML can be a powerful tool for predicting the status of spinal cord neuronal cells, revealing potential specific biomarkers quickly and efficiently, and providing crucial insights for precision medicine and rehabilitation recovery.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.17702045

References

  1. Nucleic Acids Res. 2020 Jan 8;48(D1):D890-D895 [PMID: 31584095]
  2. J Neurotrauma. 2015 Aug 1;32(15):1158-67 [PMID: 25492623]
  3. Development. 2019 Mar 27;146(12): [PMID: 30846445]
  4. J Comput Biol. 2004;11(1):147-61 [PMID: 15072693]
  5. Signal Transduct Target Ther. 2022 Mar 2;7(1):65 [PMID: 35232960]
  6. Bioinformatics. 2013 Feb 1;29(3):407-8 [PMID: 23242262]
  7. Front Genet. 2019 Feb 25;10:119 [PMID: 30858864]
  8. Bioinformatics. 2021 Aug 9;37(15):2157-2164 [PMID: 33532815]
  9. Nucleic Acids Res. 2022 Jan 7;50(D1):D1004-D1009 [PMID: 34718752]
  10. Front Med (Lausanne). 2024 Jan 17;10:1291352 [PMID: 38298505]
  11. Science. 2011 Dec 16;334(6062):1518-24 [PMID: 22174245]
  12. FASEB J. 2022 Dec;36(12):e22656 [PMID: 36374259]
  13. Front Neurol. 2019 Mar 22;10:282 [PMID: 30967837]
  14. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34037706]
  15. Sci Rep. 2024 Feb 8;14(1):3232 [PMID: 38332184]
  16. Amino Acids. 2021 Feb;53(2):239-251 [PMID: 33486591]
  17. Nat Commun. 2023 Jan 3;14(1):46 [PMID: 36596814]
  18. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  19. Plant Methods. 2023 Nov 4;19(1):119 [PMID: 37925413]
  20. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36772998]
  21. Nat Rev Neurosci. 2008 Nov;9(11):839-55 [PMID: 18931697]
  22. Neural Plast. 2016;2016:4039580 [PMID: 28050288]
  23. IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1234-1245 [PMID: 35857734]
  24. Trends Neurosci. 2009 Dec;32(12):638-47 [PMID: 19782411]
  25. Bone Res. 2023 Feb 24;11(1):10 [PMID: 36828839]
  26. Nature. 2012 Jul 26;487(7408):443-8 [PMID: 22801498]
  27. Cell Biosci. 2023 Feb 28;13(1):41 [PMID: 36849879]
  28. Brief Bioinform. 2016 Mar;17(2):193-203 [PMID: 26059461]

Word Cloud

Created with Highcharts 10.0.0spinalcordScnML94identifyinggenesnervousnervesdevelopmentnewmachinelearningpredictingsubpopulationscellsmarkerdataset24%precisionstatusneuronalcellInjuriessystemoftenresultpermanentlosssensorymotorautonomicfunctionsAccuratelycellularstateextremelyimportantfacilitatetherapeuticrehabilitativestrategiesExistingexperimentaltechniqueslabor-intensivecostlystudydevelopedpredictornervewellpredictionperformanceevaluatedtrainingaccuracy33%BasedXGBoosttestachieved08%26%accuraciesrecallF1-measurescoresrespectivelyImportantlyidentifiedsignificantmodelinterpretationbiologicallandscapeanalysiscanpowerfultoolrevealingpotentialspecificbiomarkersquicklyefficientlyprovidingcrucialinsightsmedicinerehabilitationrecoverymodelssingle-celltranscriptomepredictScRNA-seq

Similar Articles

Cited By

No available data.