Meta-analysis of experimental factors influencing single-pulse TMS effects on the early visual cortex.

Yan Zhang, Bian Song, Xingyue Zhao, Zhenlan Jin, Junjun Zhang, Ling Li
Author Information
  1. Yan Zhang: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  2. Bian Song: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  3. Xingyue Zhao: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  4. Zhenlan Jin: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  5. Junjun Zhang: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
  6. Ling Li: MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

Abstract

Background: Single-pulse transcranial magnetic stimulation (spTMS) applied to the Early Visual Cortex (EVC) has demonstrated the ability to suppress the perception on visual targets, akin to the effect of visual masking. However, the reported spTMS suppression effects across various studies have displayed inconsistency.
Objective: We aim to test if the heterogeneity of the spTMS effects can be attributable to variations in experimental factors.
Methods: We conducted a meta-analysis using data collected from the PubMed and Web of Science databases spanning from 1995 to March 2024. The meta-analysis encompassed a total of 40 independent experiments drawn from 33 original articles.
Results: The findings unveiled an overall significant spTMS suppression effect on visual perception. Nevertheless, there existed substantial heterogeneity among the experiments. Univariate analysis elucidated that the spTMS effects could be significantly influenced by TMS intensity, visual angle of the stimulus, coil type, and TMS stimulators from different manufacturers. Reliable spTMS suppression effects were observed within the time windows of -80 to 0 ms and 50 to 150 ms. Multivariate linear regression analyses, which included SOA, TMS intensity, visual angle of the stimulus, and coil type, identified SOA as the key factor influencing the spTMS effects. Within the 50 to 150 ms time window, optimal SOAs were identified as 112 ms and 98 ms for objective and subjective performance, respectively. Collectively, multiple experimental factors accounted for 22.9% ( = 0.3353) and 39.9% ( = 0.3724) of the variance in objective and subjective performance, respectively. Comparing univariate and multivariate analyses, it was evident that experimental factors had different impacts on objective performance and subjective performance.
Conclusion: The present study provided quantitative recommendations for future experiments involving the spTMS effects on visual targets, offering guidance on how to configure experimental factors to achieve the optimal masking effect.

Keywords

References

  1. Ann N Y Acad Sci. 2017 May;1396(1):92-107 [PMID: 28253445]
  2. Neuropsychologia. 2013 Jul;51(8):1497-503 [PMID: 23643729]
  3. Clin Neurophysiol. 2001 Feb;112(2):250-8 [PMID: 11165526]
  4. Hum Brain Mapp. 2023 Mar;44(4):1617-1628 [PMID: 36426867]
  5. Neuroreport. 1999 Aug 20;10(12):2631-4 [PMID: 10574382]
  6. Front Psychol. 2014 Oct 21;5:1173 [PMID: 25374548]
  7. J Neurosci. 2007 Oct 24;27(43):11465-72 [PMID: 17959789]
  8. Neuroreport. 1999 Apr 26;10(6):1245-8 [PMID: 10363933]
  9. Cereb Cortex. 2014 Oct;24(10):2751-60 [PMID: 23696280]
  10. Exp Brain Res. 2005 Jan;160(1):129-40 [PMID: 15368087]
  11. Neuropsychologia. 1999 Feb;37(2):137-45 [PMID: 10080371]
  12. J Neurosci. 2012 Sep 5;32(36):12361-5 [PMID: 22956826]
  13. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  14. Clin Neurophysiol. 2004 Jul;115(7):1697-708 [PMID: 15203072]
  15. Neuroimage. 2017 Apr 15;150:230-238 [PMID: 28254455]
  16. Brain Res. 2018 Dec 1;1700:190-198 [PMID: 30194017]
  17. Eur J Neurosci. 2009 Oct;30(7):1393-400 [PMID: 19788574]
  18. Cortex. 2014 Oct;59:1-11 [PMID: 25113954]
  19. Brain. 1995 Feb;118 ( Pt 1):49-60 [PMID: 7895014]
  20. Neuroreport. 2003 Mar 24;14(4):651-5 [PMID: 12657905]
  21. Neuroscience. 2023 Mar 1;513:111-125 [PMID: 36702371]
  22. Neuroimage. 2012 Jul 2;61(3):651-9 [PMID: 22032946]
  23. PLoS One. 2012;7(11):e48808 [PMID: 23155408]
  24. Vision Res. 1997 Mar;37(6):675-90 [PMID: 9156212]
  25. Neuroimage. 2012 Jan 2;59(1):616-24 [PMID: 21840406]
  26. Hum Brain Mapp. 2002 Feb;15(2):95-111 [PMID: 11835601]
  27. Neuroscience. 2017 Nov 5;363:134-141 [PMID: 28893648]
  28. Eur J Neurosci. 2012 Feb;35(4):623-33 [PMID: 22304409]
  29. J Cogn Neurosci. 2014 Jul;26(7):1507-18 [PMID: 24392895]
  30. Neuroimage. 2008 Jan 15;39(2):549-52 [PMID: 17945512]
  31. J Neurophysiol. 2007 Sep;98(3):1253-62 [PMID: 17634339]
  32. Neuroreport. 2005 Sep 8;16(13):1483-7 [PMID: 16110276]
  33. Neuropsychologia. 2020 Jan;136:107266 [PMID: 31758972]
  34. Eur J Neurosci. 2011 Oct;34(8):1320-5 [PMID: 21848918]
  35. J Cogn Neurosci. 2012 Apr;24(4):819-29 [PMID: 22126671]
  36. Neuroimage. 2004 Mar;21(3):801-17 [PMID: 15006647]
  37. Neuropsychologia. 2012 Jun;50(7):1621-7 [PMID: 22465860]
  38. J Clin Neurophysiol. 1991 Jan;8(1):10-25 [PMID: 2019644]
  39. Neurosci Biobehav Rev. 2021 Aug;127:353-364 [PMID: 33965459]
  40. J Clin Neurophysiol. 1992 Jan;9(1):132-6 [PMID: 1552001]
  41. PLoS One. 2013 Dec 06;8(12):e82828 [PMID: 24324837]
  42. Adv Cogn Psychol. 2008 Jul 15;3(1-2):177-9 [PMID: 20517507]
  43. J Vis. 2022 Dec 1;22(13):9 [PMID: 36580295]
  44. Psychol Res. 2007 Nov;71(6):659-66 [PMID: 16642347]
  45. Electroencephalogr Clin Neurophysiol. 1992 Oct;85(5):291-301 [PMID: 1385089]
  46. Exp Brain Res. 2011 Mar;209(1):19-27 [PMID: 21161191]
  47. Neuroscience. 2021 Nov 1;475:206-219 [PMID: 34480985]
  48. Conscious Cogn. 2011 Jun;20(2):288-98 [PMID: 20863717]
  49. Brain Stimul. 2015 Nov-Dec;8(6):1175-82 [PMID: 26169802]
  50. Conscious Cogn. 2011 Dec;20(4):1244-55 [PMID: 21632262]
  51. Brain Stimul. 2013 Jan;6(1):1-13 [PMID: 22483681]
  52. Front Behav Neurosci. 2015 Jan 30;9:5 [PMID: 25688194]
  53. Neurosci Biobehav Rev. 2014 Sep;45:295-304 [PMID: 25010557]
  54. Neurosci Lett. 2021 Jan 18;742:135538 [PMID: 33259928]
  55. Neuroimage. 2019 Jan 15;185:313-321 [PMID: 30366074]
  56. Neuroimage. 2017 Sep;158:308-318 [PMID: 28711735]
  57. Clin Neurophysiol. 2006 Oct;117(10):2292-301 [PMID: 16920022]
  58. Neuroimage. 2012 Jan 16;59(2):1608-14 [PMID: 21925610]
  59. Curr Biol. 2003 Jun 17;13(12):1038-41 [PMID: 12814549]
  60. Cortex. 2012 Mar;48(3):333-43 [PMID: 21232737]
  61. Brain Stimul. 2014 May-Jun;7(3):415-20 [PMID: 24698972]
  62. Neuropsychologia. 2019 May;128:215-222 [PMID: 29588224]
  63. J Cogn Neurosci. 2010 Jun;22(6):1262-9 [PMID: 19413482]
  64. Neurophysiol Clin. 2015 May;45(2):159-66 [PMID: 25892330]
  65. Psychol Bull. 1992 Jul;112(1):155-9 [PMID: 19565683]
  66. Neuropsychologia. 1999 Feb;37(2):169-79 [PMID: 10080374]
  67. BMJ. 2003 Sep 6;327(7414):557-60 [PMID: 12958120]

Word Cloud

Created with Highcharts 10.0.0visualspTMSeffectsexperimentalfactorseffectTMSperformancemaskingsuppressionmeta-analysisexperimentsobjectivesubjectivetranscranialmagneticstimulationperceptiontargetsheterogeneityintensityanglestimuluscoiltypedifferenttime50150 msanalysesSOAidentifiedinfluencingoptimalrespectively9% = 0single-pulseearlycortexBackground:Single-pulseappliedEarlyVisualCortexEVCdemonstratedabilitysuppressakinHoweverreportedacrossvariousstudiesdisplayedinconsistencyObjective:aimtestcanattributablevariationsMethods:conductedusingdatacollectedPubMedWebSciencedatabasesspanning1995March2024encompassedtotal40independentdrawn33originalarticlesResults:findingsunveiledoverallsignificantNeverthelessexistedsubstantialamongUnivariateanalysiselucidatedsignificantlyinfluencedstimulatorsmanufacturersReliableobservedwithinwindows-800 msMultivariatelinearregressionincludedkeyfactorWithinwindowSOAs112 ms98 msCollectivelymultipleaccounted223353393724varianceComparingunivariatemultivariateevidentimpactsConclusion:presentstudyprovidedquantitativerecommendationsfutureinvolvingofferingguidanceconfigureachieveMeta-analysis

Similar Articles

Cited By