Effect of diet on the evolution of gut commensal bacteria.

Tanja Dapa, Karina B Xavier
Author Information
  1. Tanja Dapa: Andalusian Center for Developmental Biology (CABD), Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University/CSIC/Junta de Andaluc��a, Seville, Spain. ORCID
  2. Karina B Xavier: Instituto Gulbenkian de Ci��ncia, Oeiras, Portugal.

Abstract

The gut microbiota, comprising trillions of diverse microorganisms inhabiting the intestines of animals, forms a complex and indispensable ecosystem with profound implications for the host's well-being. Its functions include contributing to developing the host's immune response, aiding in nutrient digestion, synthesizing essential compounds, acting as a barrier against pathogen invasion, and influencing the development or regression of various pathologies. The dietary habits of the host directly impact this intricate community of gut microbes. Diet influences the composition and function of the gut microbiota through alterations in gene expression, enzymatic activity, and metabolome. While the impact of diet on gut ecology is well-established, the investigation into the relationship between dietary consumption and microbial genotypic diversity has been limited. This review provides an overview of the relationship between diet and gut microbiota, emphasizing the impact of host nutrition on both short- and long-term evolution in the mammalian gut. It is evident that the evolution of the gut microbiota occurs even on short timescales through the acquisition of novel mutations, within the gut bacteria of individual hosts. Consequently, we discuss the importance of considering alterations in bacterial genomic diversity when analyzing microbiota-dependent effects on host physiology. Future investigations into the various microbiota-related traits shall greatly benefit from a deeper understanding of commensal bacterial evolutionary adaptation.

Keywords

References

  1. Cell. 2021 Apr 15;184(8):2053-2067.e18 [PMID: 33794144]
  2. PLoS Genet. 2021 Apr 26;17(4):e1009541 [PMID: 33901198]
  3. Cell Host Microbe. 2019 Mar 13;25(3):444-453.e3 [PMID: 30799264]
  4. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  5. EBioMedicine. 2014 Dec 1;1(2-3):167-172 [PMID: 25601913]
  6. BMC Evol Biol. 2018 Oct 12;18(1):153 [PMID: 30314447]
  7. Science. 2013 Sep 6;341(6150):1241214 [PMID: 24009397]
  8. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  9. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511 [PMID: 29784790]
  10. Nature. 2018 Jan 18;553(7688):291-294 [PMID: 29310122]
  11. Trends Parasitol. 2017 Dec;33(12):925-934 [PMID: 28870496]
  12. Annu Rev Microbiol. 2020 Sep 8;74:815-834 [PMID: 32692614]
  13. Microbiol Spectr. 2015 Jun;3(3): [PMID: 26185077]
  14. Nature. 2018 May;557(7705):434-438 [PMID: 29743671]
  15. Front Microbiol. 2019 Jun 28;10:1484 [PMID: 31316495]
  16. J Natl Cancer Inst. 2016 Apr 22;108(8): [PMID: 27107051]
  17. Genome Biol. 2014;15(7):R89 [PMID: 25146375]
  18. Science. 2013 Jul 5;341(6141):1237439 [PMID: 23828941]
  19. Nat Rev Microbiol. 2008 Oct;6(10):776-88 [PMID: 18794915]
  20. Cell Host Microbe. 2022 Dec 14;30(12):1773-1787.e6 [PMID: 36318918]
  21. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  22. PLoS One. 2013 May 01;8(5):e61319 [PMID: 23658690]
  23. iScience. 2022 Oct 09;25(11):105313 [PMID: 36339270]
  24. Int J Obes (Lond). 2015 Apr;39(4):665-70 [PMID: 25298276]
  25. Cell Host Microbe. 2019 Nov 13;26(5):680-690.e5 [PMID: 31726030]
  26. Nature. 2006 Dec 21;444(7122):1027-31 [PMID: 17183312]
  27. Nat Commun. 2019 May 3;10(1):2043 [PMID: 31053724]
  28. Cell Host Microbe. 2022 Mar 9;30(3):314-328.e11 [PMID: 35240043]
  29. Clin Microbiol Infect. 2012 Jul;18 Suppl 4:44-6 [PMID: 22647048]
  30. Science. 2018 Sep 21;361(6408): [PMID: 30237322]
  31. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  32. Appl Environ Microbiol. 1977 Nov;34(5):529-33 [PMID: 563214]
  33. Proc Biol Sci. 2020 Feb 12;287(1920):20192754 [PMID: 32075531]
  34. Nat Rev Immunol. 2023 Nov;23(11):735-748 [PMID: 37138015]
  35. Cell Host Microbe. 2019 Nov 13;26(5):666-679.e7 [PMID: 31607556]
  36. Nat Commun. 2023 Aug 29;14(1):4785 [PMID: 37644001]
  37. Cell Host Microbe. 2022 Feb 9;30(2):183-199.e10 [PMID: 35085504]
  38. Cell Host Microbe. 2015 May 13;17(5):690-703 [PMID: 25974306]
  39. PLoS Genet. 2014 Mar 06;10(3):e1004182 [PMID: 24603313]
  40. PLoS Biol. 2010 Nov 16;8(11):e1000546 [PMID: 21103409]
  41. J Bacteriol. 2017 Jul 11;199(15): [PMID: 28138099]
  42. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5 [PMID: 20566857]
  43. Curr Protein Pept Sci. 2019;20(2):145-154 [PMID: 29756574]
  44. PLoS One. 2012;7(6):e28742 [PMID: 22719820]
  45. Nat Commun. 2015 Nov 30;6:8945 [PMID: 26615893]
  46. Cell Host Microbe. 2019 May 8;25(5):656-667.e8 [PMID: 31028005]
  47. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  48. Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14391-14394 [PMID: 31311888]
  49. Mol Ecol. 2017 Apr;26(7):1802-1817 [PMID: 27661780]
  50. J Dev Orig Health Dis. 2013 Jun;4(3):203-14 [PMID: 24353893]
  51. Cell Host Microbe. 2017 Sep 13;22(3):411-419.e4 [PMID: 28910638]
  52. Nat Med. 2021 Jul;27(7):1272-1279 [PMID: 34226737]
  53. PLoS Pathog. 2015 Jul 02;11(7):e1004903 [PMID: 26135581]
  54. Environ Microbiol. 2012 Sep;14(9):2379-94 [PMID: 22513138]
  55. Nat Commun. 2022 Jun 22;13(1):3567 [PMID: 35732630]
  56. PLoS Genet. 2008 Jan;4(1):e2 [PMID: 18193944]
  57. Curr Biol. 2019 Jun 3;29(11):R538-R544 [PMID: 31163167]
  58. Cell Mol Life Sci. 2022 Jan 19;79(2):76 [PMID: 35043293]
  59. Science. 2005 Mar 25;307(5717):1955-9 [PMID: 15790854]
  60. Nat Microbiol. 2019 Dec;4(12):2164-2174 [PMID: 31591555]
  61. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  62. Nat Commun. 2020 Oct 15;11(1):5206 [PMID: 33060586]
  63. mBio. 2020 Apr 7;11(2): [PMID: 32265336]
  64. Nat Rev Genet. 2012 Mar 13;13(4):260-70 [PMID: 22411464]
  65. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 [PMID: 27140646]
  66. Nat Rev Microbiol. 2021 Feb;19(2):77-94 [PMID: 32968241]
  67. Nat Commun. 2017 Feb 23;8:14319 [PMID: 28230052]
  68. Science. 2011 Oct 7;334(6052):105-8 [PMID: 21885731]
  69. PLoS Biol. 2019 Jan 23;17(1):e3000102 [PMID: 30673701]
  70. Front Physiol. 2018 Dec 20;9:1836 [PMID: 30618841]
  71. Sci Adv. 2015 Apr 3;1(3): [PMID: 26229982]
  72. Cell Host Microbe. 2022 Jun 8;30(6):863-874.e4 [PMID: 35643079]
  73. Inflamm Bowel Dis. 2018 Sep 15;24(10):2142-2154 [PMID: 29668914]
  74. Nat Microbiol. 2018 Jun;3(6):662-669 [PMID: 29686297]
  75. Cell Host Microbe. 2023 Apr 12;31(4):472-484 [PMID: 37054670]
  76. Genome Biol. 2011;12(5):R50 [PMID: 21624126]
  77. Sci Transl Med. 2016 Jun 15;8(343):343ra82 [PMID: 27306664]
  78. Gut Microbes. 2019;10(2):216-227 [PMID: 30118385]
  79. Nat Rev Microbiol. 2021 Jan;19(1):55-71 [PMID: 32887946]
  80. Curr Biol. 2020 Mar 23;30(6):1102-1109.e5 [PMID: 32142696]
  81. Appl Environ Microbiol. 1977 Feb;33(2):319-22 [PMID: 848954]
  82. Nature. 2012 Sep 13;489(7415):231-41 [PMID: 22972296]
  83. Gut. 2018 Sep;67(9):1716-1725 [PMID: 29934437]
  84. Science. 2022 Jun 10;376(6598):1220-1223 [PMID: 35679413]
  85. Science. 2022 Jun 3;376(6597):eabm1483 [PMID: 35653470]
  86. Microb Ecol Health Dis. 2015 Feb 02;26:26050 [PMID: 25651996]
  87. Nature. 2012 Sep 13;489(7415):220-30 [PMID: 22972295]
  88. Science. 2017 Aug 25;357(6353):802-806 [PMID: 28839072]
  89. J Allergy Clin Immunol. 2019 Dec;144(6):1457-1466 [PMID: 31812180]
  90. Nature. 2022 Jul;607(7919):563-570 [PMID: 35831502]
  91. Nat Rev Gastroenterol Hepatol. 2023 Feb;20(2):81-100 [PMID: 36258032]
  92. Cell Metab. 2014 Nov 4;20(5):779-786 [PMID: 25156449]
  93. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 [PMID: 20668239]
  94. Nature. 2007 Oct 18;449(7164):804-10 [PMID: 17943116]
  95. Science. 2016 Apr 29;352(6285):544-5 [PMID: 27126037]
  96. Cell Host Microbe. 2011 Oct 20;10(4):324-35 [PMID: 22018233]
  97. Curr Opin Microbiol. 2022 Jun;67:102143 [PMID: 35338908]
  98. PLoS Genet. 2011 Jun;7(6):e1002107 [PMID: 21698140]
  99. Cell Host Microbe. 2008 Nov 13;4(5):447-57 [PMID: 18996345]
  100. Genome Res. 2021 Aug;31(8):1433-1446 [PMID: 34301627]
  101. Curr Biol. 2020 Mar 23;30(6):1049-1062.e7 [PMID: 32142697]
  102. Cell. 2016 Nov 17;167(5):1339-1353.e21 [PMID: 27863247]
  103. Nat Rev Microbiol. 2013 Jul;11(7):497-504 [PMID: 23748339]
  104. Cell Host Microbe. 2021 Apr 14;29(4):650-663.e9 [PMID: 33662276]
  105. Sci Rep. 2018 Oct 23;8(1):15660 [PMID: 30353125]
  106. Nat Rev Endocrinol. 2015 Mar;11(3):182-90 [PMID: 25488483]
  107. Nat Commun. 2022 Sep 24;13(1):5604 [PMID: 36153389]
  108. Cell. 2014 Aug 14;158(4):705-721 [PMID: 25126780]
  109. Science. 2016 Jul 22;353(6297):380-2 [PMID: 27463672]
  110. Sci Transl Med. 2009 Nov 11;1(6):6ra14 [PMID: 20368178]
  111. Nature. 2010 Apr 8;464(7290):908-12 [PMID: 20376150]
  112. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17906-17915 [PMID: 31431529]
  113. Cell. 2015 Feb 12;160(4):583-594 [PMID: 25640238]
  114. Nat Commun. 2018 Mar 13;9(1):1043 [PMID: 29535379]
  115. Sci Rep. 2018 May 23;8(1):8075 [PMID: 29795267]
  116. Nat Rev Microbiol. 2019 Jun;17(6):383-390 [PMID: 31089293]
  117. Genes (Basel). 2018 Nov 13;9(11): [PMID: 30428546]
  118. Science. 2019 Oct 25;366(6464): [PMID: 31649168]
  119. Science. 2018 Oct 5;362(6410):33-34 [PMID: 30287652]
  120. Appl Environ Microbiol. 2018 Mar 1;84(6): [PMID: 29305507]
  121. Cell Host Microbe. 2021 Sep 8;29(9):1454-1468.e4 [PMID: 34473943]
  122. Gut. 2022 May;71(5):1020-1032 [PMID: 35105664]
  123. mBio. 2019 Feb 5;10(1): [PMID: 30723123]
  124. Science. 2022 Sep 16;377(6612):1328-1332 [PMID: 36108023]
  125. Gut Microbes. 2019;10(2):204-209 [PMID: 30118389]
  126. Nat Med. 2018 Apr 10;24(4):392-400 [PMID: 29634682]
  127. Science. 2013 Dec 13;342(6164):1364-7 [PMID: 24231808]
  128. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7527-32 [PMID: 20368420]
  129. Nature. 2016 Jul 06;535(7610):56-64 [PMID: 27383980]
  130. Nat Rev Microbiol. 2009 Dec;7(12):887-94 [PMID: 19898491]
  131. Nat Rev Microbiol. 2016 Mar;14(3):150-62 [PMID: 26806595]
  132. Nature. 2016 Jan 14;529(7585):212-5 [PMID: 26762459]
  133. Environ Microbiol Rep. 2021 Oct;13(5):559-581 [PMID: 34036727]
  134. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11862-11863 [PMID: 32467160]
  135. Cell. 2018 Nov 1;175(4):962-972.e10 [PMID: 30388453]
  136. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]
  137. Nature. 2013 Jan 3;493(7430):45-50 [PMID: 23222524]
  138. Curr Opin Microbiol. 2023 Feb;71:102258 [PMID: 36608574]
  139. Nat Rev Gastroenterol Hepatol. 2021 Dec;18(12):885-902 [PMID: 34580480]

MeSH Term

Gastrointestinal Microbiome
Animals
Diet
Humans
Bacteria
Symbiosis
Biological Evolution
Host Microbial Interactions

Word Cloud

Created with Highcharts 10.0.0gutmicrobiotadiethostimpactevolutionbacteriacommensalhost'svariousdietaryalterationsrelationshipdiversitybacterialevolutionaryadaptationcomprisingtrillionsdiversemicroorganismsinhabitingintestinesanimalsformscomplexindispensableecosystemprofoundimplicationswell-beingfunctionsincludecontributingdevelopingimmuneresponseaidingnutrientdigestionsynthesizingessentialcompoundsactingbarrierpathogeninvasioninfluencingdevelopmentregressionpathologieshabitsdirectlyintricatecommunitymicrobesDietinfluencescompositionfunctiongeneexpressionenzymaticactivitymetabolomeecologywell-establishedinvestigationconsumptionmicrobialgenotypiclimitedreviewprovidesoverviewemphasizingnutritionshort-long-termmammalianevidentoccursevenshorttimescalesacquisitionnovelmutationswithinindividualhostsConsequentlydiscussimportanceconsideringgenomicanalyzingmicrobiota-dependenteffectsphysiologyFutureinvestigationsmicrobiota-relatedtraitsshallgreatlybenefitdeeperunderstandingEffectGutnutritionalregimens

Similar Articles

Cited By (1)