Advanced MRI imaging techniques in pediatric brain tumors.

Warda Limaye, Tahani Ahmad
Author Information
  1. Warda Limaye: Department of Radiology, Dalhousie University, Halifax, NS, Canada. warda.limaye@dal.ca. ORCID
  2. Tahani Ahmad: Department of Radiology, Dalhousie University, Halifax, NS, Canada. tahani.ahmad@iwk.nshealth.ca.

Abstract

There is a diverse array of pediatric brain tumors with considerable associated morbidity. Like adult brain tumors, MRI serves as the primary imaging modality for pediatric brain tumors. In addition to standard sequences, more advanced MRI techniques can enhance the precision of diagnosis and assist in prognostication, and treatment planning. This paper discusses these various advanced techniques categorizing them into those that assist in identifying tissue characteristics, and those that evaluate the functional impact of tumors to aid in treatment planning.

Keywords

References

  1. Subramanian S, Ahmad T (2023) Childhood brain tumors. [Updated 2023 Aug 8]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535415/
  2. Gonzalez Castro LN, Liu I, Filbin M (2023) Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol. 25:234–247 [DOI: 10.1093/neuonc/noac211]
  3. Jaju A, Yeom KW, Ryan ME (2022) MR imaging of pediatric brain tumors. Diagnostics (Basel). 12:961. Published 2022 Apr 12
  4. Jaju A, Li Y, Dahmoush H, et al (2023) Imaging of pediatric brain tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer. 70:e30147
  5. Higaki T, Nakamura Y, Tatsugami F et al (2018) Introduction to the technical aspects of computed diffusion-weighted imaging for radiologists. RadioGraphics 38:1131–1144 [DOI: 10.1148/rg.2018170115]
  6. Provenzale JM, Engelter ST, Petrella JR, Smith JS, MacFall JR (1999) Use of MR exponential diffusion-weighted images to eradicate T2 “shine-through” effect. Am J Roentgenol 172:537–539 [DOI: 10.2214/ajr.172.2.9930819]
  7. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YCN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30 [DOI: 10.3174/ajnr.A1400]
  8. Weerink LB, Appelman AP, Kloet RW, Van der Hoorn A (2023) Susceptibility-weighted imaging in intracranial hemorrhage: Not all bleeds are black. Br J Radiol 96:20220304–20220304 [DOI: 10.1259/bjr.20220304]
  9. Blüml S, Saunders A, Tamrazi B (2022) Proton MR spectroscopy of pediatric brain disorders. Diagnostics 12:1462 [DOI: 10.3390/diagnostics12061462]
  10. Panigrahy A, Blüml S (2009) Neuroimaging of pediatric brain tumors: From basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24:1343–1365 [DOI: 10.1177/0883073809342129]
  11. Whitehead MT, Lai LM, Blüml S (2022) Clinical H MRS in childhood neurometabolic diseases-part 1: technique and age-related normal spectra. Neuroradiology 64:1101–1110 [DOI: 10.1007/s00234-022-02917-w]
  12. Lange T, Dydak U, Roberts TP, Rowley HA, Bjeljac M, Boesiger P (2006) Pitfalls in lactate measurements at 3T. AJNR Am J Neuroradiol 27:895–901 [PMID: 16611787]
  13. Attia NM, Sayed SAA, Riad KF, Korany GM (2020) Magnetic resonance spectroscopy in pediatric brain tumors: How to make a more confident diagnosis. Egypt J Radiol Nucl Med 51:14–19 [DOI: 10.1186/s43055-020-0135-3]
  14. Sundgren PC (2009) MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 30:1469–76 [DOI: 10.3174/ajnr.A1580]
  15. Panigrahy A, Blüml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24:1343–1365 [DOI: 10.1177/0883073809342129]
  16. Gaillard F, Baba Y, Rock P, et al (2024) Arterial spin labeling MR perfusion. Reference article, Radiopaedia.org (Accessed on 24 Mar 2024) https://doi.org/10.53347/rID-43785
  17. Renshaw PF, Levin JM, Kaufman MJ, Ross MH, Lewis RF, Harris GJ (1997) Dynamic susceptibility contrasts magnetic resonance imaging in neuropsychiatry: present utility and future promise. Eur Radiol. 7:216–221 [DOI: 10.1007/PL00006895]
  18. Goo HW, Ra YS (2017) Advanced MRI for pediatric brain tumors with emphasis on clinical benefits. Korean J Radiol. 18:194–207 [DOI: 10.3348/kjr.2017.18.1.194]
  19. Borja MJ, Plaza MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. Am J Roentgenol 200:W483–W503 [DOI: 10.2214/AJR.12.9724]
  20. Law M (2009) Advanced imaging techniques in brain tumors. Cancer Imaging. 9 Spec No A(Special issue A):S4-S9. Published 2009 Oct 2. https://doi.org/10.1102/1470-7330.2009.9002
  21. Mukherjee P et al (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol 29:632–641 [DOI: 10.3174/ajnr.A1051]
  22. Forster BB, MacKay AL, Whittall KP et al (1998) Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 49:320–329 [PMID: 9803232]
  23. Feng X, Tustison NJ, Patel SH, Meyer CH (2020) Brain tumor segmentation using an ensemble of 3D U-Nets and overall survival prediction using radiomic features. Front Comput Neurosci 14. https://doi.org/10.3389/fncom.2020.00025
  24. Bai J, Qiu S, Zhang G (2023) Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 8:1–32

MeSH Term

Humans
Brain Neoplasms
Magnetic Resonance Imaging
Child

Word Cloud

Created with Highcharts 10.0.0tumorsbrainMRItechniquespediatricimagingadvancedassisttreatmentplanningdiversearrayconsiderableassociatedmorbidityLikeadultservesprimarymodalityadditionstandardsequencescanenhanceprecisiondiagnosisprognosticationpaperdiscussesvariouscategorizingidentifyingtissuecharacteristicsevaluatefunctionalimpactaidAdvancedBraintumorImagingOncologyPediatrics

Similar Articles

Cited By