Exploration of interspecies interactions between microorganisms can have taxonomic, ecological, evolutionary, or medical applications. To better explore interactions between microorganisms it is important to establish the ideal conditions that ensure survival of all species involved. In this study, we sought to identify the ideal biotic and abiotic factors that would result in high co-culture viability of two interkingdom species, Pseudomonas aeruginosa and Acanthamoeba castellanii, two soil dwelling microbes. There have been limited studies showing long-term interactions between these two organisms as co-culture can result in high mortality for one or both organisms suggesting a predator-predator interaction may exist between them. In this study, we identified biotic and abiotic conditions that resulted in a high viability for both organisms in long-term co-culture, including optimizing temperature, nutrient concentration, choice of bacterial strains, and the initial ratio of interacting partners. These two species represent ideal partners for studying microbial interactions because amoebae act similarly to mammalian immune cells in many respects, and this can allow researchers to study host-pathogen interactions in vitro. Therefore, long-term interaction studies between these microbes might reveal the evolutionary steps that occur in bacteria when subjected to intense predation, like what occurs when pathogens enter the human body. The culture conditions characterized here resulted in high viability for both organisms for at least 14-days in co-culture suggesting that long-term experimental studies between these species can be achieved using these culture conditions.
J Mol Biol. 2015 Nov 20;427(23):3628-45
[PMID:
26319792]
J Cell Biol. 1969 Jun;41(3):786-805
[PMID:
5768875]
Microb Ecol. 2011 Oct;62(3):505-17
[PMID:
21503776]
Microb Ecol. 2013 May;65(4):860-8
[PMID:
23354181]
Infect Immun. 1999 Sep;67(9):4427-34
[PMID:
10456883]
FEMS Microbiol Ecol. 2010 Nov;74(2):371-81
[PMID:
20722733]
Trends Microbiol. 2005 Jul;13(7):302-7
[PMID:
15935676]
Nucleic Acids Res. 2016 Jan 4;44(D1):D646-53
[PMID:
26578582]
Environ Microbiol. 2005 Oct;7(10):1593-601
[PMID:
16156732]
Infect Immun. 1999 May;67(5):2117-24
[PMID:
10225863]
Ophthalmology. 2010 Mar;117(3):445-52, 452.e1-3
[PMID:
20031220]
Ann Thorac Surg. 1997 Dec;64(6):1810-3
[PMID:
9436580]
Infect Immun. 1986 Oct;54(1):149-53
[PMID:
3093382]
Front Immunol. 2021 Feb 22;12:625597
[PMID:
33692800]
Exp Parasitol. 2012 Oct;132(2):287-92
[PMID:
22940016]
ISME J. 2008 Aug;2(8):843-52
[PMID:
18480848]
Proc Biol Sci. 2020 Nov 11;287(1938):20201706
[PMID:
33143580]
Sci Rep. 2015 Apr 23;5:9936
[PMID:
25905792]
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92
[PMID:
16687478]
PLoS Pathog. 2012 Sep;8(9):e1002945
[PMID:
23028334]
Iran J Parasitol. 2015 Apr-Jun;10(2):181-8
[PMID:
26246815]
Infect Drug Resist. 2015 Jul 29;8:237-47
[PMID:
26251621]
Trends Microbiol. 2012 Jun;20(6):299-306
[PMID:
22494803]
J Bacteriol. 2001 Mar;183(6):2151-5
[PMID:
11222621]
J Clin Invest. 1992 Dec;90(6):2187-96
[PMID:
1469082]
Nat Rev Microbiol. 2009 Sep;7(9):654-65
[PMID:
19680249]
Infect Immun. 1992 Jan;60(1):296-301
[PMID:
1729191]
Pathogens. 2014 Apr 10;3(2):309-40
[PMID:
25437802]
Appl Environ Microbiol. 2013 Oct;79(20):6407-13
[PMID:
23934496]
Parasit Vectors. 2012 Jan 10;5:6
[PMID:
22229971]
Curr Protoc Microbiol. 2012 May;Chapter 6:Unit 6E.1.
[PMID:
22549165]
Front Cell Infect Microbiol. 2014 Jan 07;3:115
[PMID:
24432250]
ISME J. 2023 Dec;17(12):2352-2361
[PMID:
37884792]
Am J Physiol. 1998 Jun;274(6):L893-900
[PMID:
9609727]
Parasitol Res. 2005 Aug;96(6):402-9
[PMID:
15940518]
Trends Parasitol. 2022 Nov;38(11):975-990
[PMID:
36109313]
Front Med (Lausanne). 2020 Oct 26;7:513242
[PMID:
33195289]
Expert Opin Ther Targets. 2010 Feb;14(2):117-30
[PMID:
20055712]
Microbiol Res. 2021 May;246:126719
[PMID:
33582609]
Int J Med Microbiol. 2010 Dec;300(8):557-62
[PMID:
20943439]
Front Microbiol. 2023 Apr 05;14:1147077
[PMID:
37089530]
Reprod Biol. 2018 Dec;18(4):450-455
[PMID:
30181055]
Antibiot Chemother (1971). 1987;39:113-24
[PMID:
3118778]
J Bacteriol. 1980 Jan;141(1):156-63
[PMID:
6243619]
Front Microbiol. 2020 Jan 09;10:2894
[PMID:
31998248]
Parasitol Res. 2014 Dec;113(12):4349-53
[PMID:
25204727]
Environ Microbiol. 2004 Mar;6(3):218-26
[PMID:
14871206]
J Infect Chemother. 2020 Sep;26(9):946-954
[PMID:
32448734]
Appl Environ Microbiol. 2018 May 1;84(10):
[PMID:
29523542]
Int J Mol Sci. 2021 Mar 18;22(6):
[PMID:
33803907]
Protist. 2016 Dec;167(6):511-525
[PMID:
27693864]
J Cell Biochem. 2009 Jul 1;107(4):579-85
[PMID:
19350548]
J Cyst Fibros. 2015 May;14(3):341-6
[PMID:
25443472]
Nature. 2000 Aug 31;406(6799):959-64
[PMID:
10984043]
Cytometry A. 2019 May;95(5):555-564
[PMID:
30985067]
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3159-64
[PMID:
11867744]
Microbiol Spectr. 2021 Dec 22;9(3):e0064221
[PMID:
34851177]
J Hosp Infect. 2020 Nov;106(3):490-494
[PMID:
32976863]
J Infect. 1998 Jan;36(1):43-8
[PMID:
9515667]
Curr Opin Infect Dis. 2021 Apr 1;34(2):72-79
[PMID:
33492004]
PLoS Negl Trop Dis. 2024 Jan 2;18(1):e0011878
[PMID:
38166139]
J Eukaryot Microbiol. 2008 May-Jun;55(3):235-43
[PMID:
18460161]
Trends Mol Med. 2004 Dec;10(12):599-606
[PMID:
15567330]
Parasitol Res. 2015 Jun;114(6):2349-56
[PMID:
25792227]
Curr Microbiol. 1997 Apr;34(4):212-5
[PMID:
9058539]