Evolutionary dynamics of any multiplayer game on regular graphs.

Chaoqian Wang, Matja�� Perc, Attila Szolnoki
Author Information
  1. Chaoqian Wang: Department of Computational and Data Sciences, George Mason University, Fairfax, VA, 22030, USA. CqWang814921147@outlook.com. ORCID
  2. Matja�� Perc: Faculty of Natural Sciences and Mathematics, University of Maribor, Koro��ka cesta 160, 2000, Maribor, Slovenia. ORCID
  3. Attila Szolnoki: Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525, Budapest, Hungary. ORCID

Abstract

Multiplayer games on graphs are at the heart of theoretical descriptions of key evolutionary processes that govern vital social and natural systems. However, a comprehensive theoretical framework for solving multiplayer games with an arbitrary number of strategies on graphs is still missing. Here, we solve this by drawing an analogy with the Balls-and-Boxes problem, based on which we show that the local configuration of multiplayer games on graphs is equivalent to distributing k identical co-players among n distinct strategies. We use this to derive the replicator equation for any n-strategy multiplayer game under weak selection, which can be solved in polynomial time. As an example, we revisit the second-order free-riding problem, where costly punishment cannot truly resolve social dilemmas in a well-mixed population. Yet, in structured populations, we derive an accurate threshold for the punishment strength, beyond which punishment can either lead to the extinction of defection or transform the system into a rock-paper-scissors-like cycle. The analytical solution also qualitatively agrees with the phase diagrams that were previously obtained for non-marginal selection strengths. Our framework thus allows an exploration of any multi-strategy multiplayer game on regular graphs.

References

  1. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41 [PMID: 26644569]
  2. Proc Biol Sci. 2019 Apr 10;286(1900):20190041 [PMID: 30940065]
  3. Proc Biol Sci. 2003 May 22;270(1519):1099-104 [PMID: 12803901]
  4. J Theor Biol. 2006 Nov 7;243(1):86-97 [PMID: 16860343]
  5. Phys Rev A. 1991 Nov 15;44(10):6375-6378 [PMID: 9905766]
  6. Nat Hum Behav. 2022 Mar;6(3):338-348 [PMID: 34980900]
  7. Proc Biol Sci. 2010 Aug 22;277(1693):2427-33 [PMID: 20375053]
  8. Science. 2002 May 10;296(5570):1129-32 [PMID: 12004134]
  9. Sci Rep. 2014 Jul 02;4:5536 [PMID: 24985887]
  10. Nat Hum Behav. 2021 May;5(5):586-595 [PMID: 33398148]
  11. PLoS Comput Biol. 2010 Apr 29;6(4):e1000758 [PMID: 20454464]
  12. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  13. J R Soc Interface. 2014 Nov 6;11(100):20140735 [PMID: 25232048]
  14. Sci Rep. 2015 Mar 10;5:8917 [PMID: 25753335]
  15. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  16. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  17. Science. 2009 Sep 4;325(5945):1272-5 [PMID: 19729661]
  18. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10757-62 [PMID: 11553811]
  19. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  20. Nature. 2002 Jan 10;415(6868):137-40 [PMID: 11805825]
  21. Proc Natl Acad Sci U S A. 2022 Jan 4;119(1): [PMID: 34983850]
  22. Nature. 2010 Aug 12;466(7308):861-3 [PMID: 20631710]
  23. Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2119656119 [PMID: 35787041]
  24. J Math Biol. 2016 Dec;73(6-7):1727-1760 [PMID: 27107868]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046106 [PMID: 22181226]
  26. J Theor Biol. 2009 Aug 7;259(3):570-81 [PMID: 19358858]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):057104 [PMID: 20866359]
  28. Phys Rev E. 2016 Feb;93(2):022407 [PMID: 26986362]
  29. Nature. 2003 Sep 25;425(6956):390-3 [PMID: 14508487]
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036101 [PMID: 21517552]
  31. Phys Rev Lett. 2007 Mar 9;98(10):108106 [PMID: 17358573]
  32. Trends Ecol Evol. 2007 Nov;22(11):593-600 [PMID: 17963994]
  33. Nat Comput Sci. 2023 Sep;3(9):763-776 [PMID: 38177777]
  34. Science. 2006 Dec 8;314(5805):1560-3 [PMID: 17158317]
  35. Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25398-25404 [PMID: 31772008]
  36. Phys Rev Lett. 2002 Sep 9;89(11):118101 [PMID: 12225171]
  37. Nat Hum Behav. 2020 Aug;4(8):819-831 [PMID: 32451481]
  38. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  39. Nature. 2009 Jan 1;457(7225):79-82 [PMID: 19122640]
  40. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):19-30 [PMID: 20008382]
  41. Nature. 2002 Jul 11;418(6894):171-4 [PMID: 12110887]
  42. J R Soc Interface. 2013 Jan 09;10(80):20120997 [PMID: 23303223]
  43. J Math Biol. 2016 Jan;72(1-2):203-38 [PMID: 25842359]
  44. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2334-7 [PMID: 21257906]
  45. Science. 1968 Dec 13;162(3859):1243-8 [PMID: 5699198]

Word Cloud

Created with Highcharts 10.0.0graphsmultiplayergamesgamepunishmenttheoreticalsocialframeworkstrategiesproblemderiveselectioncanregularMultiplayerheartdescriptionskeyevolutionaryprocessesgovernvitalnaturalsystemsHowevercomprehensivesolvingarbitrarynumberstillmissingsolvedrawinganalogyBalls-and-Boxesbasedshowlocalconfigurationequivalentdistributingkidenticalco-playersamongndistinctusereplicatorequationn-strategyweaksolvedpolynomialtimeexamplerevisitsecond-orderfree-ridingcostlytrulyresolvedilemmaswell-mixedpopulationYetstructuredpopulationsaccuratethresholdstrengthbeyondeitherleadextinctiondefectiontransformsystemrock-paper-scissors-likecycleanalyticalsolutionalsoqualitativelyagreesphasediagramspreviouslyobtainednon-marginalstrengthsthusallowsexplorationmulti-strategyEvolutionarydynamics

Similar Articles

Cited By (3)