The Dorsal Part of the Anterior Tuberal Nucleus Responds to Auditory Stimulation in Zebrafish ().

Carlos Daniel Corrales Parada, Uwe Mayer, Boris P Chagnaud
Author Information
  1. Carlos Daniel Corrales Parada: Institute for Biology, Karl-Franzens-University Graz, Graz 8010 ST, Austria carlos.corrales-parada@uni-graz.at.
  2. Uwe Mayer: Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 TN, Italy.
  3. Boris P Chagnaud: Institute for Biology, Karl-Franzens-University Graz, Graz 8010 ST, Austria.

Abstract

The zebrafish, a widely used model in neurobiology, relies on hearing in aquatic environments. Unfortunately, its auditory pathways have mainly been studied in larvae. In this study, we examined the involvement of the anterior tuberal nucleus (AT) in auditory processing in adult zebrafish. Our tract-tracing experiments revealed that the dorsal subdivision of AT is strongly bidirectionally connected to the central nucleus of the torus semicircularis (TSc), a major auditory nucleus in fishes. Immunohistochemical visualization of the ribosomal protein S6 (pS6) phosphorylation to map neural activity in response to auditory stimulation substantiated this finding: the dorsal but not the ventral part of AT responded strongly to auditory stimulation. A similar response to auditory stimulation was present in the TSc but not in the nucleus isthmi, a visual region, which we used as a control for testing if the pS6 activation was specific to the auditory stimulation. We also measured the time course of pS6 phosphorylation, which was previously unreported in teleost fish. After auditory stimulation, we found that pS6 phosphorylation peaked between 100 and 130���min and returned to baseline levels after 190���min. This information will be valuable for the design of future pS6 experiments. Our results suggest an anatomical and functional subdivision of AT, where only the dorsal part connects to the auditory network and processes auditory information.

Keywords

References

  1. J Exp Biol. 2021 Dec 1;224(23): [PMID: 34796902]
  2. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  3. J Comp Neurol. 2024 Jan;532(1):e25586 [PMID: 38289191]
  4. Behav Brain Res. 2021 Jan 15;397:112927 [PMID: 32980353]
  5. J Comp Neurol. 2000 Apr 17;419(4):505-31 [PMID: 10742718]
  6. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):419-21 [PMID: 11923001]
  7. Hear Res. 2000 Nov;149(1-2):1-10 [PMID: 11033242]
  8. Front Mol Neurosci. 2015 Dec 16;8:75 [PMID: 26733799]
  9. J Neurosci. 2011 Jun 8;31(23):8422-31 [PMID: 21653846]
  10. Curr Biol. 2021 May 10;31(9):1977-1987.e4 [PMID: 33657408]
  11. Brain Behav Evol. 1993;41(1):14-38 [PMID: 8431753]
  12. Neurochem Int. 1998 Oct;33(4):287-97 [PMID: 9840219]
  13. Neural Regen Res. 2023 Jan;18(1):219-225 [PMID: 35799546]
  14. Experientia. 1977 Aug 15;33(8):1062-3 [PMID: 891813]
  15. J Comp Neurol. 2006 Feb 20;494(6):903-43 [PMID: 16385483]
  16. Brain Behav Evol. 2021;96(3):147-162 [PMID: 34879382]
  17. Anat Embryol (Berl). 1996 Aug;194(2):187-203 [PMID: 8827327]
  18. Brain Res. 2004 Jun 18;1011(2):156-69 [PMID: 15157802]
  19. Prog Neurobiol. 1996 Oct;50(2-3):83-107 [PMID: 8971979]
  20. Brain Behav Evol. 2001 Feb;57(2):63-79 [PMID: 11435667]
  21. J Comp Neurol. 2008 Jun 1;508(4):615-47 [PMID: 18381599]
  22. J Comp Neurol. 2017 Oct 1;525(14):3031-3043 [PMID: 28599354]
  23. PLoS One. 2013 Aug 06;8(8):e70474 [PMID: 23936438]
  24. J Acoust Soc Am. 2003 Feb;113(2):1145-54 [PMID: 12597208]
  25. Int Rev Cell Mol Biol. 2015;320:41-73 [PMID: 26614871]
  26. Front Physiol. 2022 May 26;13:897931 [PMID: 35694389]
  27. Front Integr Neurosci. 2022 Mar 16;16:804881 [PMID: 35369647]
  28. Hear Res. 1992 Apr;59(1):101-7 [PMID: 1629039]
  29. Integr Comp Biol. 2017 Oct 1;57(4):820-834 [PMID: 28992072]
  30. J Assoc Res Otolaryngol. 2002 Jun;3(2):174-84 [PMID: 12162367]
  31. J Comp Neurol. 1984 Oct 10;229(1):129-51 [PMID: 6490974]
  32. J Comp Neurol. 1984 Dec 20;230(4):536-51 [PMID: 6520250]
  33. Zebrafish. 2012 Mar;9(1):1-7 [PMID: 22356697]
  34. Ann N Y Acad Sci. 2023 Dec;1530(1):161-181 [PMID: 37800392]
  35. Curr Biol. 2019 Jun 3;29(11):1771-1786.e5 [PMID: 31104935]
  36. J Comp Neurol. 2005 Jan 10;481(2):220-32 [PMID: 15562507]
  37. J Neurosci. 1994 Jul;14(7):4025-39 [PMID: 8027760]
  38. J Comp Neurol. 1998 Nov 16;401(2):227-52 [PMID: 9822151]
  39. Horm Behav. 2006 Dec;50(5):726-35 [PMID: 16914152]
  40. Hear Res. 1981 Nov;5(2-3):245-63 [PMID: 7309640]
  41. Brain Behav Evol. 2018;91(1):31-44 [PMID: 29597197]
  42. Neuroscience. 2020 Oct 15;446:199-212 [PMID: 32707292]
  43. J Comp Neurol. 2004 Jun 14;474(1):75-107 [PMID: 15156580]
  44. BMC Biol. 2020 Sep 16;18(1):125 [PMID: 32938458]
  45. Annu Rev Neurosci. 2008;31:563-90 [PMID: 18558867]
  46. Brain Res Mol Brain Res. 2002 Dec 30;109(1-2):221-5 [PMID: 12531532]
  47. J Comp Neurol. 2007 Aug 10;503(5):655-67 [PMID: 17559100]
  48. J Comp Neurol. 1991 Oct 8;312(2):311-31 [PMID: 1748736]
  49. Curr Biol. 2019 Dec 2;29(23):4010-4023.e4 [PMID: 31708392]
  50. J Comp Neurol. 2002 Jul 1;448(3):298-322 [PMID: 12115710]
  51. Laterality. 2021 Jan-Mar;26(1-2):163-185 [PMID: 33461405]
  52. Cell. 2012 Nov 21;151(5):1126-37 [PMID: 23178128]
  53. J Exp Anal Behav. 1962 Jul;5:323-8 [PMID: 13889938]
  54. Nat Commun. 2020 Nov 30;11(1):6120 [PMID: 33257652]
  55. J Comp Neurol. 2022 Jun;530(8):1164-1194 [PMID: 34697803]
  56. Science. 2023 Mar 24;379(6638):1232-1237 [PMID: 36952426]
  57. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):145-58 [PMID: 18228078]

MeSH Term

Animals
Zebrafish
Auditory Pathways
Acoustic Stimulation
Phosphorylation
Ribosomal Protein S6
Auditory Perception
Neuroanatomical Tract-Tracing Techniques
Male
Female

Chemicals

Ribosomal Protein S6

Word Cloud

Created with Highcharts 10.0.0auditorypS6nucleusstimulationATdorsalphosphorylationzebrafishusedanteriortuberalprocessingexperimentssubdivisionstronglytorussemicircularisTScneuralactivityresponseparttimecourseteleostfishinformationwidelymodelneurobiologyrelieshearingaquaticenvironmentsUnfortunatelypathwaysmainlystudiedlarvaestudyexaminedinvolvementadulttract-tracingrevealedbidirectionallyconnectedcentralmajorfishesImmunohistochemicalvisualizationribosomalproteinS6mapsubstantiatedfinding:ventralrespondedsimilarpresentisthmivisualregioncontroltestingactivationspecificalsomeasuredpreviouslyunreportedfoundpeaked100130���minreturnedbaselinelevels190���minwillvaluabledesignfutureresultssuggestanatomicalfunctionalconnectsnetworkprocessesDorsalPartAnteriorTuberalNucleusRespondsAuditoryStimulationZebrafishindirectmarker

Similar Articles

Cited By (2)