Genetic and environmental effects on morphological traits of social phenotypes in wasps.

Sarah E Orr, Nicole A Hedrick, Kayla A Murray, Abhinav K Pasupuleti, Jennifer L Kovacs, Michael A D Goodisman
Author Information
  1. Sarah E Orr: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
  2. Nicole A Hedrick: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
  3. Kayla A Murray: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
  4. Abhinav K Pasupuleti: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
  5. Jennifer L Kovacs: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia. ORCID
  6. Michael A D Goodisman: Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia. michael.goodisman@biology.gatech.edu. ORCID

Abstract

Many species exhibit distinct phenotypic classes, such as sexes in dioecious species or castes in social species. The evolution of these classes is affected by the genetic architecture governing traits shared between phenotypes. However, estimates of the genetic and environmental factors contributing to phenotypic variation in distinct classes have rarely been examined. We studied the genetic architecture underlying morphological traits in phenotypic classes in the social wasp Vespula maculifrons. Our data revealed patriline effects on a few traits, indicating weak genetic influences on caste phenotypic variation. Interestingly, traits exhibited higher heritability in queens than workers. This result suggests that genetic variation has a stronger influence on trait variation in the queen caste than the worker caste, which is unexpected because queens typically experience direct selection. Moreover, estimates of heritability for traits were correlated between the castes, indicating that variability in trait size was governed by similar genetic architecture in the two castes. However, we failed to find evidence for a significant relationship between caste dimorphism and caste correlation, as would be expected if trait evolution was constrained by intralocus genetic conflict. Our analyses also uncovered variation in the allometric relationships for traits. These analyses suggested that worker traits were proportionally smaller than queen traits for most traits examined. Overall, our data provide evidence for a strong environmental and moderate genetic basis of trait variation among castes. Moreover, our results suggest that selection previously operated on caste phenotype in this species, and phenotypic variation is now governed primarily by environmental differences.

References

  1. Proc Biol Sci. 2013 Mar 27;280(1759):20130531 [PMID: 23536604]
  2. J Hered. 2021 Dec 17;112(7):626-634 [PMID: 34558622]
  3. Mol Ecol. 2005 Sep;14(10):3123-32 [PMID: 16101778]
  4. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13367-71 [PMID: 16157878]
  5. Front Genet. 2019 Feb 26;10:132 [PMID: 30863426]
  6. Evolution. 2009 Jul;63(7):1685-96 [PMID: 19245396]
  7. Am Nat. 2009 Feb;173(2):176-87 [PMID: 19138156]
  8. J Exp Biol. 2008 Jul;211(Pt 14):2224-32 [PMID: 18587116]
  9. Q Rev Biol. 1953 Jun;28(2):136-56 [PMID: 13074471]
  10. J Exp Biol. 2017 Jan 1;220(Pt 1):53-62 [PMID: 28057828]
  11. Biol Rev Camb Philos Soc. 2020 Dec;95(6):1535-1553 [PMID: 33021060]
  12. Annu Rev Entomol. 2018 Jan 7;63:575-598 [PMID: 29068707]
  13. J Exp Biol. 2014 Apr 1;217(Pt 7):1108-15 [PMID: 24311806]
  14. Mol Ecol. 2001 Apr;10(4):1003-10 [PMID: 11348506]
  15. Semin Cell Dev Biol. 2023 Mar 30;138:117-127 [PMID: 35469676]
  16. J Evol Biol. 2013 Oct;26(10):2070-80 [PMID: 24028470]
  17. Ecol Evol. 2013 Jun;3(6):1819-34 [PMID: 23789088]
  18. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  19. Biotechniques. 1991 Apr;10(4):506-13 [PMID: 1867860]
  20. Nature. 2005 Oct 13;437(7061):999-1002 [PMID: 16222249]
  21. Am Nat. 2006 Mar;167(3):390-400 [PMID: 16673347]
  22. Ecol Evol. 2017 May 01;7(12):4179-4191 [PMID: 28649331]
  23. Evolution. 2007 Sep;61(9):2260-7 [PMID: 17767595]
  24. Ecol Evol. 2012 Dec;2(12):3098-109 [PMID: 23301175]
  25. BMC Evol Biol. 2008 Aug 20;8:239 [PMID: 18715511]
  26. Evolution. 2012 Jul;66(7):2080-93 [PMID: 22759286]
  27. J Evol Biol. 2012 Jul;25(7):1389-98 [PMID: 22551305]
  28. Am Nat. 2014 Jan;183(1):84-95 [PMID: 24334738]
  29. Bioessays. 2007 Jun;29(6):536-48 [PMID: 17508394]
  30. Nat Rev Genet. 2017 Dec;18(12):721-730 [PMID: 29062057]
  31. Oecologia. 2006 Jul;148(4):547-54 [PMID: 16604370]
  32. Mol Ecol. 2007 Jun;16(12):2589-95 [PMID: 17561915]
  33. Annu Rev Entomol. 2019 Jan 7;64:51-71 [PMID: 30256668]
  34. Ecol Evol. 2022 Feb 10;12(2):e8569 [PMID: 35169451]
  35. Naturwissenschaften. 2018 Jan 24;105(1-2):15 [PMID: 29368265]
  36. J Exp Biol. 2021 Jun 1;224(11): [PMID: 34086905]
  37. Curr Opin Insect Sci. 2019 Aug;34:73-79 [PMID: 31247422]
  38. Monogr Popul Biol. 1978;12:1-352 [PMID: 740003]
  39. Biol Rev Camb Philos Soc. 2014 Aug;89(3):671-87 [PMID: 24341677]
  40. Res Synth Methods. 2010 Apr;1(2):97-111 [PMID: 26061376]
  41. Q Rev Biol. 2005 Sep;80(3):317-36 [PMID: 16250466]
  42. Biol Rev Camb Philos Soc. 2018 May;93(2):1251-1268 [PMID: 29341390]
  43. J Exp Biol. 2008 Apr;211(Pt 8):1317-25 [PMID: 18375856]
  44. Curr Opin Insect Sci. 2019 Aug;34:40-47 [PMID: 31247416]
  45. Integr Comp Biol. 2019 Nov 1;59(5):1369-1381 [PMID: 31199435]
  46. Am Nat. 2013 Feb;181(2):161-70 [PMID: 23348771]
  47. Environ Entomol. 2012 Dec;41(6):1612-20 [PMID: 23321110]
  48. Arthropod Struct Dev. 2012 Jan;41(1):71-7 [PMID: 21992805]
  49. Curr Opin Insect Sci. 2018 Aug;28:26-32 [PMID: 30551764]
  50. Evolution. 2004 Jul;58(7):1608-12 [PMID: 15341162]
  51. Ecol Evol. 2023 Feb 15;13(2):e9825 [PMID: 36818531]
  52. Am Nat. 2020 Nov;196(5):541-554 [PMID: 33064586]
  53. Biochem Soc Trans. 2023 Apr 26;51(2):675-689 [PMID: 36929376]
  54. Nature. 1995 Mar 16;374(6519):227-32 [PMID: 7885442]
  55. Insect Sci. 2024 Feb 28;: [PMID: 38415498]
  56. Curr Opin Genet Dev. 2021 Aug;69:129-139 [PMID: 33848958]
  57. Am Nat. 2012 Sep;180(3):328-41 [PMID: 22854076]
  58. Curr Opin Insect Sci. 2016 Aug;16:28-35 [PMID: 27720047]
  59. Biol Rev Camb Philos Soc. 2021 Dec;96(6):2461-2475 [PMID: 34128582]
  60. Proc Biol Sci. 2017 Sep 13;284(1862): [PMID: 28904147]
  61. Ann N Y Acad Sci. 2014 Jul;1320:58-75 [PMID: 24913643]

Grants

  1. 2105033/National Science Foundation (NSF)
  2. 2019799/National Science Foundation (NSF)
  3. 2023-67012-39886/U.S. Department of Agriculture (United States Department of Agriculture)

MeSH Term

Animals
Wasps
Phenotype
Female
Male
Genetic Variation
Social Behavior
Environment
Gene-Environment Interaction

Word Cloud

Created with Highcharts 10.0.0traitsgeneticvariationcastephenotypicspeciesclassescastesenvironmentaltraitsocialarchitecturedistinctevolutionphenotypesHoweverestimatesexaminedmorphologicaldataeffectsindicatingheritabilityqueensqueenworkerselectionMoreovergovernedevidenceanalysesManyexhibitsexesdioeciousaffectedgoverningsharedfactorscontributingrarelystudiedunderlyingwaspVespulamaculifronsrevealedpatrilineweakinfluencesInterestinglyexhibitedhigherworkersresultsuggestsstrongerinfluenceunexpectedtypicallyexperiencedirectcorrelatedvariabilitysizesimilartwofailedfindsignificantrelationshipdimorphismcorrelationexpectedconstrainedintralocusconflictalsouncoveredallometricrelationshipssuggestedproportionallysmallerOverallprovidestrongmoderatebasisamongresultssuggestpreviouslyoperatedphenotypenowprimarilydifferencesGeneticwasps

Similar Articles

Cited By

No available data.