Hierarchical multimodal self-attention-based graph neural network for DTI prediction.

Jilong Bian, Hao Lu, Guanghui Dong, Guohua Wang
Author Information
  1. Jilong Bian: College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China.
  2. Hao Lu: College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China.
  3. Guanghui Dong: College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China.
  4. Guohua Wang: College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China.

Abstract

Drug-target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.

Keywords

References

  1. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  2. PLoS One. 2013 Nov 21;8(11):e80129 [PMID: 24278248]
  3. Bioinformatics. 2015 Jun 15;31(12):i221-9 [PMID: 26072486]
  4. IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):285-296 [PMID: 35044921]
  5. Bioinformatics. 2017 Jul 15;33(14):i92-i101 [PMID: 28881969]
  6. IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):1943-1952 [PMID: 36445997]
  7. Chem Sci. 2022 Jul 13;13(29):8693-8703 [PMID: 35974769]
  8. Genomics. 2019 Dec;111(6):1839-1852 [PMID: 30550813]
  9. Biomolecules. 2021 Apr 27;11(5): [PMID: 33925310]
  10. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  11. Bioinformatics. 2019 Jan 15;35(2):309-318 [PMID: 29982330]
  12. PLoS One. 2017 Feb 13;12(2):e0171839 [PMID: 28192537]
  13. Brief Bioinform. 2022 Mar 10;23(2): [PMID: 35089332]
  14. Brief Bioinform. 2021 Jan 18;22(1):247-269 [PMID: 31950972]
  15. Bioinformatics. 2022 May 13;38(10):2847-2854 [PMID: 35561181]
  16. J Chem Inf Model. 2019 Oct 28;59(10):4131-4149 [PMID: 31580672]
  17. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34661237]
  18. Bioinformatics. 2020 Aug 15;36(16):4406-4414 [PMID: 32428219]
  19. Bioinformatics. 2020 Nov 1;36(17):4633-4642 [PMID: 32462178]
  20. J Cheminform. 2022 Oct 3;14(1):67 [PMID: 36192818]
  21. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2624-2634 [PMID: 31985434]
  22. PLoS Comput Biol. 2019 Jun 14;15(6):e1007129 [PMID: 31199797]
  23. Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701 [PMID: 33390682]
  24. Bioinformatics. 2022 Apr 28;38(9):2571-2578 [PMID: 35274672]
  25. Bioinformatics. 2022 Jul 11;38(14):3582-3589 [PMID: 35652721]
  26. J Chem Inf Model. 2019 Aug 26;59(8):3370-3388 [PMID: 31361484]
  27. Bioinformatics. 2009 Sep 15;25(18):2397-403 [PMID: 19605421]
  28. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36274236]
  29. Bioinformatics. 2022 Jan 12;38(3):655-662 [PMID: 34664614]
  30. Bioinformatics. 2008 Oct 1;24(19):2149-56 [PMID: 18676415]
  31. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2208-2218 [PMID: 33956632]
  32. Chem Sci. 2020 Jan 8;11(9):2531-2557 [PMID: 33209251]
  33. J Comput Biol. 2011 Feb;18(2):133-45 [PMID: 21314453]
  34. Mol Inform. 2014 Oct;33(10):669-81 [PMID: 27485302]

Grants

  1. 2021YFC2100101/National Key R&D Program of China
  2. 62225109/National Natural Science Foundation of China

MeSH Term

Neural Networks, Computer
Deep Learning
Proteins
Humans
Algorithms
Computational Biology

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0multimodalpredictionDTIfusioninteractionsdrugdevelopmentdeepmodelsdrugsproteinshierarchicalgraphneuralnetworkHMSA-DTIproposedcanresultingHoweverdataintra-inter-modalfeaturesself-attention-basedproteinsequencesself-attentionDrug-targetDTIskeypartprocessaccurateefficientsignificantlyboostefficiencyreducetimeRecentyearswitnessedrapidadvancementlearningabundancelearning-basedusedsinglerepresentationmakingdifficultcomprehensivelyrepresentcharacteristicsMultimodaleffectivelycompensatelimitationssingle-modalexistingtakeaccountsimultaneouslylimitedpresentationcapabilitiesfusedreductionaccuracycalledaddressfeaturetakesSMILESmoleculargraphs2-merinputsutilizesmechanismachieveenablingcapturedemonstratedsignificantadvantagesbaselinemethodsmultipleevaluationmetricsacrossfivebenchmarkdatasetsHierarchical

Similar Articles

Cited By