Phylogenetic inference of inter-population transmission rates for infectious diseases.

Skylar A Gay, Gregory Ellison, Jianing Xu, Jialin Yang, Yiliang Wei, Shaoyuan Wu, Lili Yu, Christopher C Whalen, Jonathan Arnold, Liang Liu
Author Information
  1. Skylar A Gay: Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, United States.
  2. Gregory Ellison: Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, United States.
  3. Jianing Xu: Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, United States.
  4. Jialin Yang: Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, United States.
  5. Yiliang Wei: Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu 221116, China.
  6. Shaoyuan Wu: Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu 221116, China.
  7. Lili Yu: Department of Biostatistics, Epidemiology and Environmental Health Sciences, College of Public Health, Georgia Southern University, 1332 Southern Drive, Statesboro, GA 30677, United States.
  8. Christopher C Whalen: Global Health Institute, Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 100 Foster Road, Athens, GA 30602, United States.
  9. Jonathan Arnold: Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, United States.
  10. Liang Liu: Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, United States. ORCID

Abstract

Estimating transmission rates is a challenging yet essential aspect of comprehending and controlling the spread of infectious diseases. Various methods exist for estimating transmission rates, each with distinct assumptions, data needs, and constraints. This study introduces a novel phylogenetic approach called transRate, which integrates genetic information with traditional epidemiological approaches to estimate inter-population transmission rates. The phylogenetic method is statistically consistent as the sample size (i.e. the number of pathogen genomes) approaches infinity under the multi-population susceptible-infected-recovered model. Simulation analyses indicate that transRate can accurately estimate the transmission rate with a sample size of 200���~���400 pathogen genomes. Using transRate, we analyzed 40,028 high-quality sequences of SARS-CoV-2 in human hosts during the early pandemic. Our analysis uncovered significant transmission between populations even before widespread travel restrictions were implemented. The development of transRate provides valuable insights for scientists and public health officials to enhance their understanding of the pandemic's progression and aiding in preparedness for future viral outbreaks. As public databases for genomic sequences continue to expand, transRate is increasingly vital for tracking and mitigating the spread of infectious diseases.

Keywords

References

  1. Malar J. 2006 Nov 03;5:98 [PMID: 17081311]
  2. Sci Rep. 2017 Aug 25;7(1):9496 [PMID: 28842576]
  3. Front Microbiol. 2019 Dec 03;10:2765 [PMID: 31849902]
  4. PLOS Glob Public Health. 2022 Sep 15;2(9):e0000954 [PMID: 36962645]
  5. Trop Med Infect Dis. 2021 Jul 31;6(3): [PMID: 34449743]
  6. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):228-33 [PMID: 23248286]
  7. Appl Geogr. 2022 Nov;148:102804 [PMID: 36267149]
  8. Biometrics. 1998 Jun;54(2):730-8 [PMID: 9629653]
  9. Biostatistics. 2016 Oct;17(4):779-92 [PMID: 27324411]
  10. Euro Surveill. 2020 Apr;25(17): [PMID: 32372755]
  11. J Anim Ecol. 2011 Nov;80(6):1207-16 [PMID: 21848864]
  12. J Epidemiol Community Health. 2020 Oct;74(10):861-866 [PMID: 32576605]
  13. Biometrics. 2023 Dec;79(4):2987-2997 [PMID: 37431147]
  14. Nat Commun. 2023 Aug 10;14(1):4830 [PMID: 37563113]
  15. Elife. 2021 Mar 05;10: [PMID: 33666169]
  16. Sci Rep. 2022 Mar 17;12(1):4623 [PMID: 35301351]
  17. Afr J Med Med Sci. 2006 Jun;35(2):121-4 [PMID: 17209305]
  18. BMC Public Health. 2024 Mar 2;24(1):672 [PMID: 38431581]
  19. Infect Dis Model. 2023 Mar;8(1):172-182 [PMID: 36643866]
  20. Sci Rep. 2023 Apr 5;13(1):5571 [PMID: 37019985]
  21. Epidemics. 2023 Mar;42:100672 [PMID: 36738639]
  22. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  23. Syst Biol. 2011 Oct;60(5):661-7 [PMID: 21447481]
  24. Comput Appl Biosci. 1997 Jun;13(3):235-8 [PMID: 9183526]
  25. Epidemics. 2020 Jun;31:100392 [PMID: 32446187]
  26. AIDS. 1993 Aug;7(8):1139-48 [PMID: 8104423]
  27. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  28. J R Soc Interface. 2009 Jan 6;6(30):39-50 [PMID: 18559313]
  29. Sci Rep. 2021 Mar 1;11(1):4891 [PMID: 33649364]

Grants

  1. NSF DBI-2029595/National Science Foundation

MeSH Term

Humans
Phylogeny
SARS-CoV-2
COVID-19
Pandemics
Communicable Diseases
Genome, Viral

Word Cloud

Created with Highcharts 10.0.0transmissiontransRateratesinfectiousdiseasesphylogeneticspreadapproachesestimateinter-populationsamplesizepathogengenomesmodelratesequencespublicEstimatingchallengingyetessentialaspectcomprehendingcontrollingVariousmethodsexistestimatingdistinctassumptionsdataneedsconstraintsstudyintroducesnovelapproachcalledintegratesgeneticinformationtraditionalepidemiologicalmethodstatisticallyconsistentienumberinfinitymulti-populationsusceptible-infected-recoveredSimulationanalysesindicatecanaccurately200���~���400Usinganalyzed40028high-qualitySARS-CoV-2humanhostsearlypandemicanalysisuncoveredsignificantpopulationsevenwidespreadtravelrestrictionsimplementeddevelopmentprovidesvaluableinsightsscientistshealthofficialsenhanceunderstandingpandemic'sprogressionaidingpreparednessfutureviraloutbreaksdatabasesgenomiccontinueexpandincreasinglyvitaltrackingmitigatingPhylogeneticinferenceCOVID-19SIRdiseasetree

Similar Articles

Cited By