Selection of Reference Genes for Expression Normalization by RT-qPCR in L.

Shasha Li, Xiaomin Ge, Guoqing Bai, Chen Chen
Author Information
  1. Shasha Li: Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.
  2. Xiaomin Ge: Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.
  3. Guoqing Bai: Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.
  4. Chen Chen: Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China. ORCID

Abstract

is widely used as an ornamental, medicine, and perfume in industry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) is widely and accurately utilized for gene expression evaluations. Selecting optimal reference genes is essential for normalizing RT-qPCR results. However, the identification of suitable reference genes in . has not been documented. A total of 12 reference genes in . were identified by PEG6000 (15%) treatment under hypertonia conditions in different tissues (roots, stem, leaves, flower, seeds and sepal) and during three stages of flower development, then used to validate the expression stability. There were four algorithms (delta Ct, geNorm, NormFinder, and BestKeeper) used to analyze the stability. Finally, the RefFinder program was employed to evaluate the candidate reference genes' stability. The results showed that , (), and () were stable reference genes under the PEG6000 treatment. () was the most stable gene across different flower development stages. () was the most stable gene in different tissues and total samples. This study provides reliable gene expression studies for future research in . .

Keywords

References

  1. Anal Biochem. 2011 Jan 15;408(2):337-9 [PMID: 20816740]
  2. Genes (Basel). 2021 May 21;12(6): [PMID: 34064253]
  3. PLoS One. 2012;7(12):e51502 [PMID: 23251557]
  4. PeerJ. 2018 Apr 03;6:e4535 [PMID: 29632740]
  5. J Ethnopharmacol. 2012 Jun 14;141(3):908-17 [PMID: 22469767]
  6. PeerJ. 2018 Jul 12;6:e5226 [PMID: 30013853]
  7. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  8. J Hazard Mater. 2020 May 5;389:121873 [PMID: 31862351]
  9. Mol Genet Genomics. 2013 Nov;288(11):639-49 [PMID: 23979536]
  10. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  11. Plants (Basel). 2021 Jun 22;10(7): [PMID: 34206660]
  12. BMC Mol Biol. 2009 Jul 20;10:71 [PMID: 19619301]
  13. Int J Mol Sci. 2021 Jul 06;22(14): [PMID: 34298866]
  14. Methods Mol Biol. 2016;1392:161-76 [PMID: 26843055]
  15. PLoS One. 2012;7(5):e36918 [PMID: 22606308]
  16. Sci Rep. 2016 Aug 16;6:30363 [PMID: 27527518]
  17. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  18. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  19. Plants (Basel). 2023 May 31;12(11): [PMID: 37299163]
  20. Plant Physiol Biochem. 2021 May;162:592-602 [PMID: 33773234]
  21. Fitoterapia. 2024 Jan;172:105732 [PMID: 37952760]
  22. PeerJ. 2016 Feb 11;4:e1697 [PMID: 26893974]
  23. Genes (Basel). 2022 Oct 18;13(10): [PMID: 36292772]
  24. Planta. 2021 May 25;253(6):127 [PMID: 34036415]
  25. Plant Cell. 2022 Oct 27;34(11):4472-4494 [PMID: 35959993]
  26. Mol Genet Genomics. 2012 Feb;287(2):167-76 [PMID: 22203160]
  27. Genes (Basel). 2021 May 13;12(5): [PMID: 34068362]
  28. Sci Rep. 2021 Nov 5;11(1):21711 [PMID: 34741052]
  29. Mol Plant. 2023 Nov 6;16(11):1733-1742 [PMID: 37740491]
  30. Plant Biotechnol J. 2008 Aug;6(6):609-18 [PMID: 18433420]
  31. Sci Rep. 2020 Sep 28;10(1):15891 [PMID: 32985612]
  32. Evid Based Complement Alternat Med. 2021 May 03;2021:6695346 [PMID: 34007298]
  33. J Plant Physiol. 2023 Feb;281:153925 [PMID: 36657231]
  34. Mol Cell Probes. 2020 Oct;53:101610 [PMID: 32522510]
  35. Funct Integr Genomics. 2023 Apr 15;23(2):125 [PMID: 37060478]
  36. PLoS One. 2014 Jan 22;9(1):e86492 [PMID: 24466117]
  37. PLoS One. 2018 May 8;13(5):e0196966 [PMID: 29738567]
  38. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  39. Front Plant Sci. 2021 Oct 28;12:755539 [PMID: 34777433]
  40. Phytother Res. 2023 Jul;37(7):2745-2758 [PMID: 36794391]
  41. Phytochemistry. 2021 Apr;184:112680 [PMID: 33550196]
  42. Plants (Basel). 2022 Feb 14;11(4): [PMID: 35214851]
  43. Int J Mol Sci. 2022 Nov 17;23(22): [PMID: 36430695]
  44. Front Genet. 2020 Nov 03;11:586098 [PMID: 33240331]
  45. PLoS One. 2014 Oct 23;9(10):e111399 [PMID: 25340748]
  46. Plant Cell Rep. 2012 Sep;31(9):1759-68 [PMID: 22678434]

Grants

  1. (No. 2021k-15; No.2023k-46/Science and Technology Program of the Shaanxi Academy of Sciences
  2. No. XAB2021YW02/Western Young Scholars Program of Chinese Academy of Science
  3. No. 2022KJXX-27/Innovation Capability Support Program of Shaanxi
  4. No. 2022JQ-198/Natural Science Basic Research Program of Shaanxi

Word Cloud

Created with Highcharts 10.0.0genereferenceRT-qPCRexpressiongenesuseddifferentflowerstabilitystablewidelyresultstotalPEG6000treatmenttissuesstagesdevelopmentornamentalmedicineperfumeindustryReal-timefluorescencequantitativepolymerasechainreactionaccuratelyutilizedevaluationsSelectingoptimalessentialnormalizingHoweveridentificationsuitabledocumented12identified15%hypertoniaconditionsrootsstemleavesseedssepalthreevalidatefouralgorithmsdeltaCtgeNormNormFinderBestKeeperanalyzeFinallyRefFinderprogramemployedevaluatecandidategenes'showedacrosssamplesstudyprovidesreliablestudiesfutureresearchSelectionReferenceGenesExpressionNormalizationLDracocephalummoldavicadroughtstress

Similar Articles

Cited By (1)