An In-Depth Study of Phytopathogenic : Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management.

Samantha C Karunarathna, Nimesha M Patabendige, Wenhua Lu, Suhail Asad, Kalani K Hapuarachchi
Author Information
  1. Samantha C Karunarathna: Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China. ORCID
  2. Nimesha M Patabendige: Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ORCID
  3. Wenhua Lu: Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. ORCID
  4. Suhail Asad: School of Biology and Chemistry, Pu'er University, Pu'er 665000, China. ORCID
  5. Kalani K Hapuarachchi: College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China.

Abstract

Phytopathogenic species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, and plant infection mechanisms of these pathogens is imperative. This comprehensive review critically examines various aspects of spp., including their intricate life cycle, their disease mechanisms, and the multifaceted environmental factors influencing their spread. Recent studies have quantified the economic impact of infections, revealing staggering yield losses ranging from 20% to 80% across various crops. In particular, oil palm plantations suffer devastating losses, with an estimated annual reduction in yield exceeding 50 million metric tons. Moreover, this review elucidates the dynamic interactions between and host plants, delineating the pathogen's colonization strategies and its elicitation of intricate plant defense responses. This comprehensive analysis underscores the imperative for adopting an integrated approach to disease management. By synergistically harnessing cultural practices, biological control, and chemical treatments and by deploying resistant plant varieties, substantial strides can be made in mitigating infestations. Furthermore, a collaborative effort involving scientists, breeders, and growers is paramount in the development and implementation of sustainable strategies against this pernicious plant pathogen. Through rigorous scientific inquiry and evidence-based practices, we can strive towards safeguarding global plant health and mitigating the dire economic consequences inflicted by infections.

Keywords

References

  1. Plants (Basel). 2022 May 24;11(11): [PMID: 35684168]
  2. Plant Dis. 2016 Aug;100(8):1559-1563 [PMID: 30686235]
  3. Mycopathologia. 2005 Jan;159(1):159-70 [PMID: 15750749]
  4. ScientificWorldJournal. 2012;2012:647504 [PMID: 22919345]
  5. Mycologia. 2022 Jan-Feb;114(1):157-174 [PMID: 34797203]
  6. Spat Spatiotemporal Epidemiol. 2018 Feb;24:63-74 [PMID: 29413715]
  7. Mycopathologia. 2005 Jan;159(1):123-7 [PMID: 15750744]
  8. J Basic Microbiol. 2024 Apr 30;:e202300769 [PMID: 38686908]
  9. Environ Sci Pollut Res Int. 2015 Dec;22(24):19648-57 [PMID: 26276276]
  10. Mycology. 2023 Aug 8;14(3):204-226 [PMID: 37583455]
  11. Biomed Res Int. 2018 Mar 12;2018:1494157 [PMID: 29721500]
  12. J Fungi (Basel). 2022 Mar 18;8(3): [PMID: 35330313]
  13. J Fungi (Basel). 2022 Jul 29;8(8): [PMID: 36012782]
  14. Springerplus. 2013 Oct 24;2:555 [PMID: 24255849]
  15. Plants (Basel). 2022 Sep 21;11(19): [PMID: 36235329]
  16. Plants (Basel). 2023 Jan 17;12(3): [PMID: 36771517]
  17. J Microbiol. 2016 Nov;54(11):732-744 [PMID: 27796927]
  18. PeerJ Comput Sci. 2023 Apr 17;9:e1325 [PMID: 37346512]
  19. Plants (Basel). 2021 Sep 27;10(10): [PMID: 34685835]
  20. Folia Microbiol (Praha). 2021 Aug;66(4):677-688 [PMID: 34041694]
  21. Plant Dis. 2019 Dec;103(12):3218-3225 [PMID: 31596688]
  22. BMC Plant Biol. 2022 Mar 24;22(1):139 [PMID: 35331141]
  23. J Agric Food Chem. 2018 Jan 31;66(4):806-813 [PMID: 29281878]
  24. Plant Dis. 2023 May 8;: [PMID: 37157090]
  25. Microorganisms. 2020 Jul 28;8(8): [PMID: 32731441]
  26. Arch Microbiol. 2021 Dec 19;204(1):31 [PMID: 34923595]
  27. BMC Plant Biol. 2018 Dec 29;18(1):377 [PMID: 30594134]
  28. Mycopathologia. 2005 Jan;159(1):153-7 [PMID: 15750748]
  29. Sci Rep. 2022 Dec 6;12(1):21087 [PMID: 36473892]
  30. Front Plant Sci. 2017 Aug 15;8:1395 [PMID: 28861093]
  31. Biology (Basel). 2020 Nov 27;9(12): [PMID: 33260913]
  32. Mol Biol Rep. 2023 Mar;50(3):2367-2379 [PMID: 36580194]
  33. Plant Dis. 2023 Mar;107(3):603-615 [PMID: 35819350]
  34. Trop Life Sci Res. 2020 Apr;31(1):19-43 [PMID: 32963709]
  35. Microorganisms. 2020 Mar 01;8(3): [PMID: 32121612]
  36. Biology (Basel). 2021 Sep 18;10(9): [PMID: 34571807]
  37. Front Microbiol. 2023 Feb 23;14:1131599 [PMID: 36910175]
  38. PeerJ. 2019 Dec 18;7:e8065 [PMID: 31879570]
  39. Plant Pathol J. 2016 Oct;32(5):396-406 [PMID: 27721689]
  40. Mycopathologia. 2005 Jan;159(1):93-100 [PMID: 15750739]
  41. J Appl Microbiol. 2018 Jun;124(6):1544-1555 [PMID: 29405525]
  42. Folia Microbiol (Praha). 2009;54(2):147-52 [PMID: 19418253]
  43. J Plant Physiol. 2013 Nov 1;170(16):1455-60 [PMID: 23769496]
  44. Molecules. 2021 Sep 26;26(19): [PMID: 34641379]
  45. J Fungi (Basel). 2021 Dec 29;8(1): [PMID: 35049969]
  46. Microorganisms. 2019 Oct 16;7(10): [PMID: 31623251]
  47. Plant Dis. 2017 Jun;101(6):1009-1016 [PMID: 30682927]
  48. J Agric Food Chem. 2020 Apr 15;68(15):4305-4314 [PMID: 32227887]
  49. Sensors (Basel). 2021 Apr 27;21(9): [PMID: 33925576]
  50. Sci Rep. 2020 Apr 15;10(1):6464 [PMID: 32296108]
  51. J Fungi (Basel). 2021 Jan 18;7(1): [PMID: 33477406]
  52. J Microbiol Methods. 2014 May;100:143-7 [PMID: 24681306]
  53. J Basic Microbiol. 2012 Oct;52(5):608-12 [PMID: 22143962]
  54. Int J Mol Sci. 2014 Mar 24;15(3):5175-92 [PMID: 24663087]
  55. J Fungi (Basel). 2021 Sep 30;7(10): [PMID: 34682240]
  56. J Microbiol. 2011 Aug;49(4):551-7 [PMID: 21887636]
  57. Phytopathology. 2017 Apr;107(4):483-490 [PMID: 27918241]
  58. G3 (Bethesda). 2017 Jun 7;7(6):1683-1692 [PMID: 28592650]
  59. Sci Rep. 2020 Dec 18;10(1):22323 [PMID: 33339951]
  60. Front Plant Sci. 2023 Jul 10;14:1156869 [PMID: 37492765]
  61. J Microbiol. 2023 Apr;61(4):449-459 [PMID: 37097587]
  62. Plant Dis. 2003 Oct;87(10):1201-1204 [PMID: 30812723]
  63. Protein J. 2016 Apr;35(2):100-6 [PMID: 27016942]
  64. Mol Breed. 2021 Sep 5;41(9):53 [PMID: 37309398]
  65. Sensors (Basel). 2010;10(1):734-47 [PMID: 22315565]
  66. Mycopathologia. 2005 Jan;159(1):101-7 [PMID: 15750740]
  67. Biomed Res Int. 2020 Jan 25;2020:3063710 [PMID: 32420335]
  68. Biology (Basel). 2022 Feb 06;11(2): [PMID: 35205119]
  69. Electrophoresis. 2015 Aug;36(15):1699-710 [PMID: 25930948]
  70. Plant Dis. 2023 Mar;107(3):682-687 [PMID: 35869585]
  71. IMA Fungus. 2015 Jun;6(1):249-56 [PMID: 26203427]
  72. Int Immunopharmacol. 2009 Oct;9(11):1272-80 [PMID: 19651243]
  73. J Plant Physiol. 2011 Jul 1;168(10):1106-13 [PMID: 21333381]
  74. CABI Agric Biosci. 2021;2(1):39 [PMID: 34661165]
  75. Mycobiology. 2015 Jun;43(2):107-17 [PMID: 26190917]
  76. World J Microbiol Biotechnol. 2017 Dec 18;34(1):15 [PMID: 29256103]
  77. Molecules. 2019 Jul 08;24(13): [PMID: 31288497]
  78. Plant Dis. 2018 Oct;102(10):1944-1949 [PMID: 30088787]
  79. Mycorrhiza. 2015 Jul;25(5):387-97 [PMID: 25492807]
  80. Sci Rep. 2020 Sep 24;10(1):15621 [PMID: 32973199]
  81. Mycopathologia. 2005 Jan;159(1):119-21 [PMID: 15750743]
  82. Mol Biol Rep. 2013 Jan;40(1):147-58 [PMID: 23065213]
  83. Plants (Basel). 2021 Aug 28;10(9): [PMID: 34579330]
  84. Molecules. 2020 Dec 16;25(24): [PMID: 33339375]
  85. BMC Genomics. 2016 Jan 19;17:66 [PMID: 26781612]
  86. Sci Prog. 2023 Jul-Sep;106(3):368504231195503 [PMID: 37611190]
  87. Genes (Basel). 2020 Oct 26;11(11): [PMID: 33114747]

Grants

  1. No. 32260004/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0planteconomiclossescomprehensivemechanismsdiseasePhytopathogenicglobalhealthestimatedannualexceedingpathogensimperativereviewvariousintricateinfectionsyieldstrategiesdefenseresponsesmanagementpracticesbiologicalcontrolcanmitigatingspeciesposesignificantthreatresultingUSDUSDollars68billionagricultureforestrysectorsworldwidecombatpervasivemenaceeffectivelyunderstandingbiologyecologyinfectioncriticallyexaminesaspectssppincludinglifecyclemultifacetedenvironmentalfactorsinfluencingspreadRecentstudiesquantifiedimpactrevealingstaggeringranging20%80%acrosscropsparticularoilpalmplantationssufferdevastatingreduction50millionmetrictonsMoreoverelucidatesdynamicinteractionshostplantsdelineatingpathogen'scolonizationelicitationanalysisunderscoresadoptingintegratedapproachsynergisticallyharnessingculturalchemicaltreatmentsdeployingresistantvarietiessubstantialstridesmadeinfestationsFurthermorecollaborativeeffortinvolvingscientistsbreedersgrowersparamountdevelopmentimplementationsustainableperniciouspathogenrigorousscientificinquiryevidence-basedstrivetowardssafeguardingdireconsequencesinflictedIn-DepthStudy:PathogenicityAdvancedDetectionTechniquesControlStrategiesSustainableManagementpathogenicity

Similar Articles

Cited By (1)