Comparative Bioremediation of Tetradecane, Cyclohexanone and Cyclohexane by Filamentous Fungi from Polluted Habitats in Kazakhstan.

Mariam Gaid, Wiebke Jentzsch, Hannah Beermann, Anne Reinhard, Mareike Meister, Ramza Berzhanova, Togzhan Mukasheva, Tim Urich, Annett Mikolasch
Author Information
  1. Mariam Gaid: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany. ORCID
  2. Wiebke Jentzsch: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany.
  3. Hannah Beermann: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany.
  4. Anne Reinhard: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany.
  5. Mareike Meister: Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
  6. Ramza Berzhanova: Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, Almaty 050040, Kazakhstan.
  7. Togzhan Mukasheva: Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, Almaty 050040, Kazakhstan.
  8. Tim Urich: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany. ORCID
  9. Annett Mikolasch: Institute of Microbiology, University Greifswald, Felix-Hausdorff-Stra��e 8, 17489 Greifswald, Germany. ORCID

Abstract

Studying the fates of oil components and their interactions with ecological systems is essential for developing comprehensive management strategies and enhancing restoration following oil spill incidents. The potential expansion of Kazakhstan's role in the global oil market necessitates the existence of land-specific studies that contribute to the field of bioremediation. In this study, a set of experiments was designed to assess the growth and biodegradation capacities of eight fungal strains sourced from Kazakhstan soil when exposed to the hydrocarbon substrates from which they were initially isolated. The strains were identified as sp. SBUG-M1743, SBUG-M1744, SBUG-M1770, SBUG-M1750 and SBUG-1746, SBUG-M1748, SBUG-M1768 and SBUG-M1769 using the internal transcribed spacer (ITS) region. Furthermore, microscopic and macroscopic evaluations agreed with the sequence-based identification. sp. SBUG-M1743 and SBUG-M1744 displayed remarkable biodegradation capabilities in the presence of tetradecane with up to a 9-fold biomass increase in the static cultures. SBUG-M1750 exhibited poor growth, which was a consequence of its low efficiency of tetradecane degradation. Monocarboxylic acids were the main degradation products by SBUG-M1743, SBUG-M1744, SBUG-M1750, and SBUG-M1770 indicating the monoterminal degradation pathway through ��-oxidation, while the additional detection of dicarboxylic acid in SBUG-M1768 and SBUG-M1769 cultures was indicative of the fungus' ability to undertake both monoterminal and diterminal degradation pathways. SBUG-M1746 and SBUG-M1748 in the presence of cyclohexanone showed a doubling of the biomass with the ability to degrade the substrate almost completely in shake cultures. SBUG-M1746 was also able to degrade cyclohexane completely and excreted all possible metabolites of the degradation pathway. Understanding the degradation potential of these fungal isolates to different hydrocarbon substrates will help in developing effective bioremediation strategies tailored to local conditions.

Keywords

References

  1. Front Microbiol. 2018 Oct 30;9:2543 [PMID: 30425689]
  2. World J Microbiol Biotechnol. 2021 Apr 26;37(5):90 [PMID: 33899136]
  3. Bioresour Technol. 2003 Mar;87(1):81-6 [PMID: 12733580]
  4. 3 Biotech. 2018 Jan;8(1):21 [PMID: 29276659]
  5. Microorganisms. 2023 Aug 30;11(9): [PMID: 37764039]
  6. Microbiol Rev. 1995 Jun;59(2):201-22 [PMID: 7603409]
  7. J Basic Microbiol. 2016 Nov;56(11):1252-1273 [PMID: 27624187]
  8. Chemosphere. 2020 Nov;258:127281 [PMID: 32540545]
  9. Environ Sci Pollut Res Int. 2014 Nov;21(22):12757-66 [PMID: 24969427]
  10. Int Microbiol. 2019 Mar;22(1):103-110 [PMID: 30810938]
  11. 3 Biotech. 2022 Mar;12(3):79 [PMID: 35251882]
  12. J Microbiol Biotechnol. 2011 Sep;21(9):995-1000 [PMID: 21952378]
  13. Mycologia. 1948 Sep-Oct;40(5):507-46 [PMID: 18880813]
  14. Persoonia. 2019;43:1-47 [PMID: 32214496]
  15. Appl Microbiol Biotechnol. 2015 May;99(9):4071-84 [PMID: 25592733]
  16. Saudi J Biol Sci. 2021 Jan;28(1):73-77 [PMID: 33424285]
  17. Appl Microbiol Biotechnol. 2007 Oct;76(6):1209-21 [PMID: 17673997]
  18. J Biol Chem. 1994 Mar 18;269(11):8022-8 [PMID: 8132524]
  19. Front Microbiol. 2021 Mar 31;12:626436 [PMID: 33868189]
  20. Environ Microbiol. 2009 Oct;11(10):2477-90 [PMID: 19807712]
  21. Appl Microbiol Biotechnol. 2019 May;103(10):4137-4151 [PMID: 30941461]
  22. Mycobiology. 2024 Mar 8;52(2):92-101 [PMID: 38690031]
  23. Appl Environ Microbiol. 1996 Jun;62(6):2045-52 [PMID: 16535337]
  24. Bioorg Chem. 2019 Dec;93:103331 [PMID: 31622851]
  25. Appl Microbiol Biotechnol. 2009 Oct;84(5):965-76 [PMID: 19536538]
  26. Stud Mycol. 2024 Mar;107:1-66 [PMID: 38600958]
  27. Microorganisms. 2020 Jan 23;8(2): [PMID: 31979290]
  28. Front Microbiol. 2023 May 23;14:1193189 [PMID: 37287448]
  29. Mar Pollut Bull. 2007 Nov;54(11):1692-6 [PMID: 17904586]
  30. 3 Biotech. 2022 Jun;12(6):135 [PMID: 35620568]
  31. Stud Mycol. 2020 Jun 27;95:5-169 [PMID: 32855739]
  32. J Basic Microbiol. 2010 Jun;50(3):241-53 [PMID: 20143352]
  33. Appl Microbiol Biotechnol. 2019 Sep;103(17):7261-7274 [PMID: 31346684]
  34. Ecotoxicol Environ Saf. 2018 Nov 30;164:398-408 [PMID: 30142606]
  35. World J Microbiol Biotechnol. 2016 Nov;32(11):180 [PMID: 27638318]
  36. Bioresour Technol. 2006 Sep;97(14):1583-91 [PMID: 16153825]
  37. J Gen Microbiol. 1982 Mar;128(3):471-6 [PMID: 6281364]
  38. Appl Microbiol Biotechnol. 2021 Jan;105(1):401-415 [PMID: 33219393]
  39. Chemosphere. 2021 Oct;280:130608 [PMID: 33962296]
  40. Bioresour Technol. 2008 May;99(7):2637-43 [PMID: 17572084]
  41. J Biotechnol. 2023 Jan 20;362:54-62 [PMID: 36592666]

Word Cloud

Created with Highcharts 10.0.0degradationoilSBUG-M1743SBUG-M1744SBUG-M1750culturesdevelopingstrategiespotentialbioremediationgrowthbiodegradationfungalstrainsKazakhstanhydrocarbonsubstratesspSBUG-M1770SBUG-M1748SBUG-M1768SBUG-M1769presencetetradecanebiomassmonoterminalpathwayabilityditerminalSBUG-M1746cyclohexanonedegradecompletelycyclohexaneStudyingfatescomponentsinteractionsecologicalsystemsessentialcomprehensivemanagementenhancingrestorationfollowingspillincidentsexpansionKazakhstan'sroleglobalmarketnecessitatesexistenceland-specificstudiescontributefieldstudysetexperimentsdesignedassesscapacitieseightsourcedsoilexposedinitiallyisolatedidentifiedSBUG-1746usinginternaltranscribedspacerITSregionFurthermoremicroscopicmacroscopicevaluationsagreedsequence-basedidentificationdisplayedremarkablecapabilities9-foldincreasestaticexhibitedpoorconsequencelowefficiencyMonocarboxylicacidsmainproductsindicating��-oxidationadditionaldetectiondicarboxylicacidindicativefungus'undertakepathwaysshoweddoublingsubstratealmostshakealsoableexcretedpossiblemetabolitesUnderstandingisolatesdifferentwillhelpeffectivetailoredlocalconditionsComparativeBioremediationTetradecaneCyclohexanoneCyclohexaneFilamentousFungiPollutedHabitatsalkanescrudeoxidationmycoremediation

Similar Articles

Cited By