Enhanced Antibacterial Properties of Titanium Surfaces through Diversified Ion Plating with Silver Atom Deposition.

Everton Granemann Souza, Chiara das Dores do Nascimento, Cesar Aguzzoli, Elena Sarai Baena Santill��n, Carlos Enrique Cuevas-Su��rez, Patricia da Silva Nascente, Evandro Piva, Rafael Guerra Lund
Author Information
  1. Everton Granemann Souza: Graduate Program in Electronic and Computer Engineering, Catholic University of Pelotas, Pelotas 96015-560, Brazil. ORCID
  2. Chiara das Dores do Nascimento: Graduate Program in Electronic and Computer Engineering, Catholic University of Pelotas, Pelotas 96015-560, Brazil.
  3. Cesar Aguzzoli: Graduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias 95070-560, Brazil. ORCID
  4. Elena Sarai Baena Santill��n: Academic Area of Dentistry, Autonomous University of Hidalgo, Pachuca de Soto 42080, Mexico. ORCID
  5. Carlos Enrique Cuevas-Su��rez: Academic Area of Dentistry, Autonomous University of Hidalgo, Pachuca de Soto 42080, Mexico. ORCID
  6. Patricia da Silva Nascente: Biology Institute, Federal University of Pelotas, Pelotas 96010-560, Brazil.
  7. Evandro Piva: Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, Brazil. ORCID
  8. Rafael Guerra Lund: Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, Brazil. ORCID

Abstract

In this study, we investigate the antibacterial effect of silver atoms implanted into a thin surface layer of titanium at low energies using an alternative ion plating technology called Diversified Ion Plating. Silver atoms were incorporated into titanium samples using reactive low-voltage ion plating at 2 keV and 4 keV. Surface modifications and morphology were evaluated using wettability, profilometry measurements, and energy-dispersive spectroscopy. For a precise determination of the quantity and depth of implanted silver atoms on titanium surfaces, a combination of experimental techniques such as Rutherford Backscattering Spectrometry along with Monte Carlo simulations were utilized. To assess the antibacterial effects of the silver atoms incorporated into pure titanium surfaces, bacterial suspension immersion tests were performed with a standard strain of (ATCC 12600). The outcomes indicate that titanium surfaces implanted with silver atoms were more effective in inhibiting the growth of than pure titanium surfaces. Better results were found when the deposition was performed at 4 keV, indicating that a deeper implantation of silver, spanning a few nanometers, can result in a longer and more effective release of silver atoms. These findings suggest the potential for the development of new, cost-effective biomaterials, paving the way for improved implant materials in various health-related applications.

Keywords

References

  1. Jpn Dent Sci Rev. 2021 Nov;57:85-96 [PMID: 34188729]
  2. J Tissue Eng. 2018 Jul 25;9:2041731418789838 [PMID: 30083308]
  3. Med Oral Patol Oral Cir Bucal. 2005 Apr 01;10 Suppl1:E27-39 [PMID: 15800465]
  4. AMB Express. 2017 Nov 15;7(1):204 [PMID: 29143221]
  5. Front Cell Infect Microbiol. 2014 Aug 19;4:112 [PMID: 25191645]
  6. Int J Nanomedicine. 2019 Jul 01;14:4709-4721 [PMID: 31308654]
  7. Curr Microbiol. 2010 Dec;61(6):554-9 [PMID: 20422191]
  8. Open Forum Infect Dis. 2022 Nov 30;9(12):ofac653 [PMID: 36589483]
  9. J Dent Res. 2015 Aug;94(8):1027-34 [PMID: 26001706]
  10. Front Chem. 2019 Nov 28;7:824 [PMID: 31850313]
  11. Br J Pharmacol. 2017 Jul;174(14):2237-2246 [PMID: 28063237]
  12. Nat Rev Microbiol. 2018 Oct;16(10):616-627 [PMID: 30008468]
  13. Biofouling. 2010 Jan;26(1):103-10 [PMID: 20390560]
  14. Nanomedicine. 2007 Mar;3(1):95-101 [PMID: 17379174]
  15. Front Bioeng Biotechnol. 2021 Feb 12;9:643722 [PMID: 33644027]
  16. Materials (Basel). 2022 Jul 19;15(14): [PMID: 35888492]
  17. J Antimicrob Chemother. 2010 Sep;65(9):1955-8 [PMID: 20615927]
  18. Antimicrob Agents Chemother. 1988 Apr;32(4):454-7 [PMID: 2837137]
  19. J Colloid Interface Sci. 1998 Dec 1;208(1):23-33 [PMID: 9820746]
  20. Antibiotics (Basel). 2018 Oct 26;7(4): [PMID: 30373130]
  21. Drug Discov Today Technol. 2014 Mar;11:49-56 [PMID: 24847653]
  22. Phytomedicine. 2015 Oct 15;22(11):975-80 [PMID: 26407939]
  23. J Dent Res. 2010 Jul;89(7):657-65 [PMID: 20448246]
  24. Int J Crit Illn Inj Sci. 2014 Apr;4(2):162-7 [PMID: 25024944]
  25. Antibiotics (Basel). 2020 Apr 15;9(4): [PMID: 32326384]
  26. Science. 1999 May 21;284(5418):1318-22 [PMID: 10334980]
  27. Environ Sci Technol. 2017 Feb 21;51(4):2447-2455 [PMID: 28085256]
  28. Soft Matter. 2013 May 14;9(18):4368-4380 [PMID: 23930134]
  29. J Biomed Mater Res B Appl Biomater. 2022 Nov;110(11):2542-2573 [PMID: 35579269]
  30. Eur J Clin Microbiol Infect Dis. 2015 Sep;34(9):1823-6 [PMID: 26071000]

Word Cloud

Created with Highcharts 10.0.0silveratomstitaniumsurfacesimplantedusingionDiversifiedIonPlatingkeVantibacterialplatingSilverincorporated4pureperformedeffectiveimplantationstudyinvestigateeffectthinsurfacelayerlowenergiesalternativetechnologycalledsamplesreactivelow-voltage2Surfacemodificationsmorphologyevaluatedwettabilityprofilometrymeasurementsenergy-dispersivespectroscopyprecisedeterminationquantitydepthcombinationexperimentaltechniquesRutherfordBackscatteringSpectrometryalongMonteCarlosimulationsutilizedassesseffectsbacterialsuspensionimmersiontestsstandardstrainATCC12600outcomesindicateinhibitinggrowthBetterresultsfounddepositionindicatingdeeperspanningnanometerscanresultlongerreleasefindingssuggestpotentialdevelopmentnewcost-effectivebiomaterialspavingwayimprovedimplantmaterialsvarioushealth-relatedapplicationsEnhancedAntibacterialPropertiesTitaniumSurfacesAtomDepositionDIPStaphylococcusaureusinhibitionbiofilmprevention

Similar Articles

Cited By

No available data.