Does Phage Therapy Need a Pan-Phage?

Petros Bozidis, Eleftheria Markou, Athanasia Gouni, Konstantina Gartzonika
Author Information
  1. Petros Bozidis: Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece. ORCID
  2. Eleftheria Markou: Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece.
  3. Athanasia Gouni: Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece.
  4. Konstantina Gartzonika: Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.

Abstract

The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.

Keywords

References

  1. Water Sci Technol. 2002;46(1-2):39-43 [PMID: 12216656]
  2. Pathogens. 2023 Apr 20;12(4): [PMID: 37111509]
  3. Nat Immunol. 2020 Mar;21(3):343-353 [PMID: 32066951]
  4. Front Cell Infect Microbiol. 2022 Mar 10;12:836706 [PMID: 35360104]
  5. Antibiotics (Basel). 2023 Dec 14;12(12): [PMID: 38136768]
  6. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34083444]
  7. J Biomed Sci. 2022 Mar 30;29(1):23 [PMID: 35354477]
  8. STAR Protoc. 2021 Aug 26;2(3):100784 [PMID: 34485945]
  9. Annu Rev Microbiol. 2020 Sep 8;74:521-543 [PMID: 32680453]
  10. Appl Environ Microbiol. 2013 Sep;79(18):5559-65 [PMID: 23835183]
  11. BMC Microbiol. 2020 Jul 9;20(1):204 [PMID: 32646376]
  12. Prog Mol Biol Transl Sci. 2023;201:93-118 [PMID: 37770177]
  13. Viruses. 2021 Jul 12;13(7): [PMID: 34372554]
  14. Arch Immunol Ther Exp (Warsz). 1987;35(5):569-83 [PMID: 3455647]
  15. Microorganisms. 2021 Jan 29;9(2): [PMID: 33572937]
  16. J Gen Microbiol. 1978 Nov;109(1):97-112 [PMID: 366079]
  17. mBio. 2021 Apr 27;12(2): [PMID: 33906920]
  18. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11109-14 [PMID: 25024215]
  19. Nat Rev Microbiol. 2015 May;13(5):269-84 [PMID: 25853778]
  20. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  21. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414 [PMID: 20452953]
  22. Front Microbiol. 2016 Sep 08;7:1352 [PMID: 27660623]
  23. Water Res. 2002 Jul;36(13):3364-70 [PMID: 12188136]
  24. Can J Microbiol. 2006 Jul;52(7):664-72 [PMID: 16917523]
  25. Antibiotics (Basel). 2020 Jul 30;9(8): [PMID: 32751681]
  26. Adv Drug Deliv Rev. 2019 May;145:4-17 [PMID: 30659855]
  27. Front Pharmacol. 2024 Apr 09;15:1356179 [PMID: 38659581]
  28. Curr Microbiol. 2011 Jan;62(1):255-60 [PMID: 20607539]
  29. BioDrugs. 2021 May;35(3):255-280 [PMID: 33881767]
  30. Sci Rep. 2024 Apr 23;14(1):9354 [PMID: 38653744]
  31. Curr Opin Biotechnol. 2021 Apr;68:272-281 [PMID: 33744824]
  32. Gigascience. 2021 Sep 8;10(9): [PMID: 34498685]
  33. BMC Microbiol. 2011 May 14;11:102 [PMID: 21569567]
  34. Clin Microbiol Infect. 2023 Oct;29(10):1242-1248 [PMID: 36028087]
  35. Appl Microbiol Biotechnol. 2010 Feb;85(5):1533-40 [PMID: 19763563]
  36. Front Microbiol. 2019 Dec 17;10:2877 [PMID: 31921055]
  37. J Biol Chem. 2020 Jul 31;295(31):10593-10609 [PMID: 32424042]
  38. Annu Rev Microbiol. 2015;69:405-23 [PMID: 26488279]
  39. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173 [PMID: 28828194]
  40. Bacteriophage. 2015 Apr 18;5(1):e1020260 [PMID: 26442188]
  41. Lancet. 2012 Dec 15;380(9859):2095-128 [PMID: 23245604]
  42. mBio. 2014 May 06;5(3):e00880-14 [PMID: 24803515]
  43. Front Microbiol. 2020 Jun 05;11:1056 [PMID: 32582061]
  44. Appl Environ Microbiol. 2022 Sep 13;88(17):e0089522 [PMID: 35969059]
  45. Pathog Immun. 2022 Oct 17;7(2):1-45 [PMID: 36320594]
  46. Viruses. 2018 Apr 19;10(4): [PMID: 29671810]
  47. J Virol. 1971 Nov;8(5):669-74 [PMID: 4943683]
  48. Microbiome. 2017 Jan 23;5(1):10 [PMID: 28122648]
  49. Crit Rev Microbiol. 2017 Sep;43(5):583-601 [PMID: 28071145]
  50. Ther Adv Urol. 2019 May 02;11:1756287219832172 [PMID: 31105774]
  51. Curr Drug Deliv. 2016;13(3):309-23 [PMID: 27090515]
  52. ISME J. 2018 Jun;12(7):1706-1714 [PMID: 29467398]
  53. PLoS Biol. 2023 May 23;21(5):e3002119 [PMID: 37220114]
  54. Science. 1944 Aug 4;100(2588):103-5 [PMID: 17788929]
  55. Pharm Res. 2023 May;40(5):1057-1072 [PMID: 36123511]
  56. Parasitology. 2018 Feb;145(2):116-133 [PMID: 27976597]
  57. Adv Virus Res. 2021;111:63-110 [PMID: 34663499]
  58. BMJ. 2007 Jan 6;334(7583):35-40 [PMID: 17204802]
  59. Int J Food Microbiol. 2022 Jul 2;372:109680 [PMID: 35512432]
  60. PLoS One. 2009 Oct 09;4(10):e7370 [PMID: 19816605]
  61. Adv Appl Microbiol. 2010;70:217-48 [PMID: 20359459]
  62. Front Microbiol. 2022 Jul 05;13:933751 [PMID: 35865922]
  63. Front Microbiol. 2022 May 10;13:796132 [PMID: 35620093]
  64. J Bacteriol. 2014 Mar;196(6):1143-54 [PMID: 24363347]
  65. Br Med J. 1962 Oct 27;2(5312):1101-2 [PMID: 20789534]
  66. Pharm Res. 2011 Apr;28(4):934-7 [PMID: 21063753]
  67. Appl Environ Microbiol. 2014 Nov;80(21):6694-703 [PMID: 25149517]
  68. EBioMedicine. 2016 Jul;9:336-345 [PMID: 27333043]
  69. Clin Infect Dis. 2023 Jan 6;76(1):103-112 [PMID: 35676823]
  70. Antibiotics (Basel). 2020 May 29;9(6): [PMID: 32486059]
  71. Can J Infect Dis Med Microbiol. 2007 Jan;18(1):19-26 [PMID: 18923687]
  72. mBio. 2016 Aug 30;7(4): [PMID: 27578757]
  73. Viruses. 2021 Oct 12;13(10): [PMID: 34696479]
  74. Front Microbiol. 2020 Jun 03;11:1171 [PMID: 32582107]
  75. mSystems. 2022 Aug 30;7(4):e0001922 [PMID: 35762793]
  76. Arch Virol. 2008;153(3):507-15 [PMID: 18188500]
  77. Front Microbiol. 2019 Jan 31;9:3192 [PMID: 30766528]
  78. Appl Microbiol Biotechnol. 2019 Sep;103(18):7751-7765 [PMID: 31388727]
  79. Bacteriol Rev. 1976 Dec;40(4):793-802 [PMID: 795414]
  80. Biophys Rev. 2018 Apr;10(2):535-542 [PMID: 29299830]
  81. Cell. 2019 Oct 3;179(2):459-469.e9 [PMID: 31585083]
  82. Environ Sci Pollut Res Int. 2023 Jun 22;: [PMID: 37347328]
  83. J Bacteriol. 2010 Nov;192(21):5746-54 [PMID: 20817773]
  84. Gene. 2009 Feb 1;430(1-2):123-31 [PMID: 19010402]
  85. Nat Microbiol. 2020 Mar;5(3):465-472 [PMID: 32066959]
  86. FEMS Microbiol Lett. 2009 Jun;296(2):210-8 [PMID: 19459952]
  87. Front Microbiol. 2019 May 03;10:954 [PMID: 31130936]
  88. J Bacteriol. 2005 Oct;187(19):6742-9 [PMID: 16166537]
  89. Trends Biotechnol. 2023 May;41(5):669-685 [PMID: 36117025]
  90. Viruses. 2018 Apr 05;10(4): [PMID: 29621199]
  91. PLoS One. 2017 Jul 25;12(7):e0181671 [PMID: 28742812]
  92. Cell Rep. 2024 Feb 27;43(2):113728 [PMID: 38300802]
  93. Viruses. 2019 Sep 26;11(10): [PMID: 31561510]
  94. mBio. 2020 May 19;11(3): [PMID: 32430469]
  95. Curr Opin Infect Dis. 2023 Oct 1;36(5):353-359 [PMID: 37593952]
  96. Microbiology (Reading). 1998 Mar;144 ( Pt 3):719-726 [PMID: 9534241]
  97. Appl Environ Microbiol. 2017 May 1;83(10): [PMID: 28258146]
  98. Gut Microbes. 2022 Jan-Dec;14(1):2113717 [PMID: 36037202]
  99. Annu Rev Microbiol. 2017 Sep 8;71:79-98 [PMID: 28622090]
  100. Eur Rev Med Pharmacol Sci. 2021 Dec;25(1 Suppl):101-107 [PMID: 34890040]
  101. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  102. Surg Infect (Larchmt). 2018 Nov/Dec;19(8):737-744 [PMID: 30256176]
  103. Front Microbiol. 2016 Sep 26;7:1515 [PMID: 27725811]
  104. Nature. 2018 Feb 1;554(7690):118-122 [PMID: 29364876]
  105. Viruses. 2024 Mar 12;16(3): [PMID: 38543808]
  106. Nat Commun. 2022 Jan 18;13(1):302 [PMID: 35042848]
  107. Cell Rep. 2019 Oct 29;29(5):1336-1350.e4 [PMID: 31665644]
  108. J Virol. 2021 Aug 25;95(18):e0092021 [PMID: 34191582]
  109. FEMS Microbiol Rev. 2008 Mar;32(2):149-67 [PMID: 18194336]
  110. Microorganisms. 2023 Jun 19;11(6): [PMID: 37375116]
  111. Environ Microbiol. 2017 Dec;19(12):5060-5077 [PMID: 29076652]
  112. Curr Allergy Asthma Rep. 2023 Feb;23(2):67-76 [PMID: 36525159]
  113. PLoS One. 2011;6(9):e25486 [PMID: 21980477]
  114. Int J Mol Sci. 2022 May 30;23(11): [PMID: 35682794]
  115. PLoS Biol. 2021 Nov 16;19(11):e3001424 [PMID: 34784345]
  116. Bacteriophage. 2011 May;1(3):174-178 [PMID: 22164351]
  117. Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9963-8 [PMID: 21613567]
  118. Viruses. 2019 Mar 11;11(3): [PMID: 30862096]
  119. Annu Rev Microbiol. 2013;67:313-36 [PMID: 24024634]
  120. Microbiome. 2021 Apr 14;9(1):92 [PMID: 33853672]
  121. J Virol. 2020 Jun 1;94(12): [PMID: 32238583]
  122. Adv Drug Deliv Rev. 2018 Aug;133:76-86 [PMID: 30096336]
  123. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30104266]
  124. Mucosal Immunol. 2017 Mar;10(2):299-306 [PMID: 27966551]
  125. Evol Appl. 2021 Jun 19;14(8):2055-2063 [PMID: 34429748]
  126. Pharmaceuticals (Basel). 2021 Apr 02;14(4): [PMID: 33918287]
  127. Chembiochem. 2010 Jan 4;11(1):35-45 [PMID: 19899094]
  128. Nat Commun. 2024 Mar 12;15(1):2223 [PMID: 38472230]
  129. Microbiology (Reading). 2009 Dec;155(Pt 12):4050-4057 [PMID: 19744987]
  130. Res Microbiol. 2007 Sep;158(7):553-4 [PMID: 17855060]
  131. Microorganisms. 2022 Nov 24;10(12): [PMID: 36557580]
  132. J Crohns Colitis. 2022 Nov 1;16(10):1617-1627 [PMID: 35997152]
  133. Viruses. 2023 Feb 20;15(2): [PMID: 36851802]
  134. Clin Infect Dis. 2023 Nov 2;77(Suppl 5):S360-S369 [PMID: 37932120]
  135. Front Vet Sci. 2021 Jun 10;8:683853 [PMID: 34179174]
  136. Curr Opin Biotechnol. 2021 Apr;68:151-159 [PMID: 33310655]
  137. Curr Med Chem. 2015;22(14):1757-73 [PMID: 25666799]
  138. Infect Chemother. 2018 Jun;50(2):160-198 [PMID: 29968985]
  139. PLoS Pathog. 2023 May 18;19(5):e1011363 [PMID: 37200239]
  140. Genome Announc. 2013 Oct 10;1(5): [PMID: 24115538]
  141. J Virol. 2023 Nov 30;97(11):e0085023 [PMID: 37943040]
  142. Bacteriophage. 2011 Mar;1(2):66-85 [PMID: 22334863]
  143. J Med Pharm Chem. 1962 Nov;5:1103-23 [PMID: 14056446]
  144. Microorganisms. 2020 Dec 16;8(12): [PMID: 33339331]
  145. Microbiol Immunol. 1985;29(12):1185-95 [PMID: 3913846]
  146. Nat Commun. 2022 Jul 22;13(1):4239 [PMID: 35869081]
  147. Life (Basel). 2023 Jan 04;13(1): [PMID: 36676100]
  148. J Appl Microbiol. 2018 Nov;125(5):1253-1265 [PMID: 29924909]
  149. Cureus. 2022 Oct 17;14(10):e30385 [PMID: 36407206]
  150. Cell Rep Methods. 2022 May 23;2(5):100217 [PMID: 35637913]
  151. Annu Rev Microbiol. 2016 Sep 8;70:125-41 [PMID: 27607550]
  152. J Bacteriol. 2004 Dec;186(24):8337-46 [PMID: 15576783]
  153. Appl Environ Microbiol. 2010 Mar;76(5):1704-6 [PMID: 20080996]
  154. Microorganisms. 2023 Sep 29;11(10): [PMID: 37894111]
  155. Evolution. 2008 Jan;62(1):1-11 [PMID: 18005153]
  156. Viruses. 2022 Oct 28;14(11): [PMID: 36366479]
  157. Mol Microbiol. 2013 Feb;87(4):818-34 [PMID: 23289425]
  158. Microb Pathog. 2019 Nov;136:103659 [PMID: 31398528]
  159. Life (Basel). 2023 Jun 30;13(7): [PMID: 37511861]
  160. Cell. 2023 Jan 5;186(1):17-31 [PMID: 36608652]
  161. Virol J. 2023 Feb 1;20(1):19 [PMID: 36726151]
  162. J Bacteriol. 1993 May;175(10):3089-95 [PMID: 8387995]
  163. Viruses. 2020 Dec 19;12(12): [PMID: 33352791]
  164. Nat Commun. 2024 Apr 12;15(1):3197 [PMID: 38609370]
  165. mSystems. 2021 Feb 2;6(1): [PMID: 33531404]
  166. Nat Commun. 2019 May 23;10(1):2288 [PMID: 31123265]
  167. Viruses. 2022 Apr 29;14(5): [PMID: 35632679]
  168. Bacteriophage. 2016 Jan 5;6(1):e1096995 [PMID: 27144083]
  169. Cell Host Microbe. 2019 Dec 11;26(6):764-778.e5 [PMID: 31757768]
  170. Future Microbiol. 2013 Jun;8(6):769-83 [PMID: 23701332]
  171. Front Microbiol. 2013 Dec 24;4:408 [PMID: 24400001]
  172. J Virol. 1977 Sep;23(3):461-6 [PMID: 408513]
  173. Nucleic Acids Res. 2012 Apr;40(8):e55 [PMID: 22241772]
  174. Microbiol Mol Biol Rev. 2001 Jun;65(2):232-60 ; second page, table of contents [PMID: 11381101]
  175. Clin Orthop Relat Res. 2005 Aug;(437):3-6 [PMID: 16056018]
  176. Am Rev Tuberc. 1954 Jul;70(1):9-14 [PMID: 13158812]
  177. Nat Rev Microbiol. 2010 May;8(5):317-27 [PMID: 20348932]
  178. Elife. 2021 Jul 05;10: [PMID: 34219648]
  179. Int J Mol Sci. 2019 Jan 06;20(1): [PMID: 30621339]
  180. BMC Urol. 2017 Sep 26;17(1):90 [PMID: 28950849]
  181. J Bacteriol. 1991 Sep;173(17):5568-72 [PMID: 1885534]
  182. Viruses. 2022 Dec 08;14(12): [PMID: 36560744]
  183. Front Microbiol. 2017 Jan 20;8:34 [PMID: 28163700]
  184. Front Microbiol. 2019 Nov 15;10:2649 [PMID: 31803168]
  185. Appl Environ Microbiol. 2005 Aug;71(8):4872-4 [PMID: 16085886]
  186. Pol J Microbiol. 2010;59(3):145-55 [PMID: 21033576]
  187. J Hyg (Lond). 1936 Jun;36(2):204-35 [PMID: 20475326]
  188. Bacteriophage. 2012 Apr 1;2(2):105-283 [PMID: 23050221]
  189. Annu Rev Physiol. 2016;78:481-504 [PMID: 26527186]
  190. Curr Issues Mol Biol. 2023 Feb 01;45(2):1149-1167 [PMID: 36826021]
  191. Polymers (Basel). 2021 Feb 10;13(4): [PMID: 33578978]
  192. Viruses. 2023 Apr 21;15(4): [PMID: 37113000]
  193. Folia Microbiol (Praha). 2020 Apr;65(2):217-231 [PMID: 31494814]
  194. Int J Mol Sci. 2022 Oct 12;23(20): [PMID: 36292999]
  195. Ups J Med Sci. 2014 May;119(2):192-8 [PMID: 24678769]
  196. Tuberculosis (Edinb). 2019 Mar;115:14-23 [PMID: 30948168]
  197. Crit Rev Microbiol. 2020 Feb;46(1):78-99 [PMID: 32091280]
  198. J Bacteriol. 2005 Feb;187(3):1091-104 [PMID: 15659686]
  199. Clin Orthop Relat Res. 2005 Oct;439:23-6 [PMID: 16205132]
  200. Antimicrob Agents Chemother. 2001 Mar;45(3):649-59 [PMID: 11181338]

MeSH Term

Phage Therapy
Bacteriophages
Humans
Bacterial Infections
Host Specificity
Bacteria
Anti-Bacterial Agents
Drug Resistance, Multiple, Bacterial

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0hostrangephagebacteriausedbacterialinfectionseitherbroadtherapychallengesphagesdifferentemergencemultidrug-resistantundoubtedlyoneseriousglobalhealththreatsOneresponsethreatgainingmomentumpastdecade'phagetherapy'AccordinglyticbacteriophagestreatmentalonecombinationantimicrobialagentsHoweverensureefficacyapplicabilityseveralmustovercomeencompassdevelopmentmethodsstrategiesmanipulationbypassresistancemechanismsdevelopedpathogeniccasesinceadventantibioticsknowledgeunderstandinginteractionshostsevolveskeyissuedefineapplicationarticlediscussfactorsaffectdeterminesclassificationcategoriesactiongrouprecentrepresentativeexamplesprovidedtogethersuggestionsgroupscancombatcertaintypesavailablemethodologiesexpansionsequentialadaptationnewpathogengeneticengineeringtechniquesalsoreviewedPhageTherapyNeedPan-Phage?bacteriophagemonovalentnarrowpolyvalent

Similar Articles

Cited By