Ecology and geography of Cache Valley virus assessed using ecological niche modeling.

John A Muller, Krisangel López, Luis E Escobar, Albert J Auguste
Author Information
  1. John A Muller: Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
  2. Krisangel López: Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
  3. Luis E Escobar: Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
  4. Albert J Auguste: Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. jauguste@vt.edu.

Abstract

BACKGROUND: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle.
METHODS: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission.
RESULTS: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission.
CONCLUSIONS: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.

Keywords

References

  1. Am J Trop Med Hyg. 1998 Nov;59(5):704-9 [PMID: 9840585]
  2. J Wildl Dis. 1991 Apr;27(2):230-7 [PMID: 1906113]
  3. N Engl J Med. 1997 Feb 20;336(8):547-9 [PMID: 9023091]
  4. J Clin Microbiol. 2013 Jun;51(6):1966-9 [PMID: 23515536]
  5. J Wildl Dis. 2000 Oct;36(4):798-805 [PMID: 11085448]
  6. Clin Infect Dis. 2021 Nov 2;73(9):1700-1702 [PMID: 33630998]
  7. Science. 1959 Oct 30;130(3383):1187-8 [PMID: 14402567]
  8. Emerg Infect Dis. 1995 Oct-Dec;1(4):147-51 [PMID: 8903187]
  9. Evolution. 2008 Nov;62(11):2868-83 [PMID: 18752605]
  10. Parasit Vectors. 2019 Jul 31;12(1):384 [PMID: 31366369]
  11. Am J Trop Med Hyg. 1970 May;19(3):493-502 [PMID: 4392807]
  12. PLoS One. 2017 Aug 24;12(8):e0183626 [PMID: 28837685]
  13. Can Vet J. 2018 Apr;59(4):413-418 [PMID: 29606729]
  14. J Wildl Dis. 1992 Jul;28(3):435-42 [PMID: 1512876]
  15. Emerg Infect Dis. 2006 May;12(5):854-6 [PMID: 16704854]
  16. Vector Borne Zoonotic Dis. 2015 Nov;15(11):683-93 [PMID: 26565774]
  17. Zoonoses Public Health. 2019 Nov;66(7):739-758 [PMID: 31254324]
  18. Sci Data. 2017 Sep 05;4:170122 [PMID: 28872642]
  19. J Wildl Dis. 1987 Apr;23(2):199-204 [PMID: 3586196]
  20. Emerg Infect Dis. 2017 Aug;23(8):1325-1331 [PMID: 28726602]
  21. PLoS One. 2023 Aug 24;18(8):e0290443 [PMID: 37616323]
  22. Can J Microbiol. 1980 Mar;26(3):287-90 [PMID: 6105910]
  23. J Med Entomol. 1973 Oct 8;10(5):470-6 [PMID: 4148560]
  24. Vector Borne Zoonotic Dis. 2014 Oct;14(10):763-73 [PMID: 25325321]
  25. J Med Entomol. 2023 Nov 14;60(6):1230-1241 [PMID: 37862064]
  26. Emerg Infect Dis. 2022 Feb;28(2):303-313 [PMID: 35075998]
  27. J Wildl Dis. 2008 Jan;44(1):188-92 [PMID: 18263839]

Grants

  1. K01AI168452/National Institute of Allergy and Infectious Diseases
  2. Hatch VA-160103, project 1020026/National Institute of Food and Agriculture
  3. CAREER 2235295/National Science Foundation
  4. Gilliam Fellowship for Advanced Study/Howard Hughes Medical Institute
  5. R01AI153433/National Institute of Allergy and Infectious Diseases
  6. R01 AI153433/NIAID NIH HHS

MeSH Term

Animals
Mosquito Vectors
Ecosystem
North America
Bunyamwera virus
Culicidae
Bunyaviridae Infections
Geography
Culex
Aedes
Mammals
Deer
Humans
Ecology

Word Cloud

Created with Highcharts 10.0.0CVVtransmissionvectorshostspotentiallikelynicheCacheValleyvirusgeographicalNorthAmericasylvaticdataecologicalmodelingidentifieddistributionthroughoutgeographymammalmosquitospeciesusedhotspotsbackgroundsimilaritytestswidespreadEcologicalareasclimatesuitabledeerBACKGROUND:understudiedOrthobunyavirushighspilloverduewidelargenumberassociatedAlthoughknownwidelydistributedstudiesexploredemployedcomputationalmethodsexploreparticipatingthe CVVcycleMETHODS:literaturereviewonlinedatabasescompilelocalitylinkedlocationpointsclimaticviaestimaterangeriskidentifydetectsignalsRESULTS:mapsrevealedviraloccurrencemodelsmaintainAedesvexansCulisetainornataCulextarsalisOdocoileusvirginianuswhite-tailedhostsustainingCONCLUSIONS:continental-levelLargeemergenceestablishmentspreadconfirmedreportsdateviewmisdiagnosisunderreportingcanguidefuturesurveillancespecificlocalitiesEcologyassessedusingMosquitoVectorWhite-tailed

Similar Articles

Cited By