Comprehensive Bio-Screening of Phytochemistry and Biological Capacity of () and Extracts against Oral Cariogenic and Food-Origin Pathogenic Bacteria.

Maria Antoniadou, Georgios Rozos, Natalia Vaou, Konstantinos Zaralis, Caglar Ersanli, Athanasios Alexopoulos, Aikaterini Dadamogia, Theodoros Varzakas, Athina Tzora, Chrysoula Chrysa Voidarou
Author Information
  1. Maria Antoniadou: Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece. ORCID
  2. Georgios Rozos: Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece. ORCID
  3. Natalia Vaou: Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.
  4. Konstantinos Zaralis: Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece. ORCID
  5. Caglar Ersanli: Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece. ORCID
  6. Athanasios Alexopoulos: Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece. ORCID
  7. Aikaterini Dadamogia: Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece.
  8. Theodoros Varzakas: Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece. ORCID
  9. Athina Tzora: Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece. ORCID
  10. Chrysoula Chrysa Voidarou: Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece. ORCID

Abstract

This study utilized phytochemical screening to conduct the qualitative analysis of plant extracts, aiming to identify various classes of secondary metabolites. Moreover, the antibacterial activity of different types of and extracts was determined. To achieve the aim of this study, aqueous, ethanolic, and enzymatic extracts were prepared and screened for phytochemical capacity and antioxidant activities. The determination of the antibacterial activity included phenotypic screening of antibiotic susceptibility pattern of oral and food pathogenic bacterial strains, determination of the minimum inhibitory concentration and minimum bactericidal concentration-via microdilution broth test and in vitro valuation of antibacterial efficacies-of the anti-biofilm properties of the studied herbal extractions. Results: Our study evaluated the phytochemical composition and the antioxidant, antibacterial, and anti-biofilm properties of and extracts. The analyzed samples contained bioactive compounds, such as phenolics and flavonoids, contributing to the observed strong antioxidant effect. Furthermore, they exhibited notable activity against oral biofilm formation and demonstrated significant antibacterial efficacy against dental caries' microorganisms as well as food pathogens. Despite methodological variations, all extracts showed significant antioxidant capacity and promising antibacterial activity against various pathogens, including resistant strains, while also inhibiting biofilm formation. Although limited to two plant species and facing methodological constraints, this study lays the groundwork for future research, indicating the therapeutic potential of and extracts. Further exploration is needed to report on underlying mechanisms and validate efficacy through clinical trials.

Keywords

References

  1. Pharmacotherapy. 2017 Jan;37(1):71-84 [PMID: 27859453]
  2. Sci Rep. 2023 Dec 15;13(1):22309 [PMID: 38102229]
  3. Biomedicines. 2022 Jul 27;10(8): [PMID: 36009350]
  4. Wiley Interdiscip Rev Syst Biol Med. 2011 Jan-Feb;3(1):7-20 [PMID: 21064036]
  5. Curr Protoc Plant Biol. 2016;1:345-358 [PMID: 27868090]
  6. J Food Sci Technol. 2015 May;52(5):2797-805 [PMID: 25892777]
  7. Antibiotics (Basel). 2020 Jul 21;9(7): [PMID: 32708120]
  8. Prog Mol Biol Transl Sci. 2020;171:131-193 [PMID: 32475520]
  9. Nutrients. 2021 Mar 19;13(3): [PMID: 33808883]
  10. J Sci Food Agric. 2019 Mar 15;99(4):1457-1474 [PMID: 30206947]
  11. Molecules. 2020 Oct 15;25(20): [PMID: 33076426]
  12. Heliyon. 2023 Oct 24;9(11):e21196 [PMID: 37954257]
  13. Biomed Res Int. 2020 Apr 6;2020:8751718 [PMID: 32337282]
  14. Foods. 2022 Oct 25;11(21): [PMID: 36359973]
  15. Plants (Basel). 2021 Jun 28;10(7): [PMID: 34203366]
  16. Adv Dent Res. 2018 Feb;29(1):78-85 [PMID: 29355414]
  17. Healthcare (Basel). 2023 Jul 05;11(13): [PMID: 37444780]
  18. Arch Oral Biol. 2021 Mar;123:104994 [PMID: 33472099]
  19. Cancer Immunol Immunother. 2022 Oct;71(10):2565-2575 [PMID: 35301576]
  20. Nat Rev Microbiol. 2018 Dec;16(12):745-759 [PMID: 30301974]
  21. BMC Complement Altern Med. 2012 Nov 16;12:221 [PMID: 23153304]
  22. Nutrients. 2021 Nov 15;13(11): [PMID: 34836334]
  23. Nutr Res. 2010 Apr;30(4):271-8 [PMID: 20534330]
  24. Microorganisms. 2023 Sep 20;11(9): [PMID: 37764202]
  25. Evid Based Complement Alternat Med. 2022 Sep 28;2022:1307801 [PMID: 36212949]
  26. J Food Prot. 2020 Jan;83(1):163-171 [PMID: 31860394]
  27. J AOAC Int. 2020 Apr 1;103(2):413-421 [PMID: 31530341]
  28. Clin Pract. 2022 Dec 06;12(6):1009-1019 [PMID: 36547112]
  29. Transpl Immunol. 2005 Aug;14(3-4):143-53 [PMID: 15982556]
  30. BMC Complement Med Ther. 2022 Jul 20;22(1):194 [PMID: 35858857]
  31. Molecules. 2016 Jul 11;21(7): [PMID: 27409600]
  32. J Cardiovasc Thorac Res. 2021;13(2):179-180 [PMID: 34326975]
  33. Metabolites. 2023 Jul 25;13(8): [PMID: 37623827]
  34. Pathogens. 2021 Feb 04;10(2): [PMID: 33557078]
  35. Chronic Dis Transl Med. 2019 Oct 01;5(3):178-187 [PMID: 31891129]
  36. Antibiotics (Basel). 2023 Feb 13;12(2): [PMID: 36830295]
  37. Heliyon. 2022 Oct 17;8(10):e11113 [PMID: 36311355]
  38. Phytochemistry. 2015 Nov;119:32-40 [PMID: 26454793]
  39. Microorganisms. 2023 Dec 28;12(1): [PMID: 38257885]
  40. Adv Nutr. 2011 Jan;2(1):32-50 [PMID: 22211188]
  41. Microbiol Spectr. 2019 Jan;7(1): [PMID: 30657107]
  42. Int J Mol Sci. 2020 Dec 17;21(24): [PMID: 33348921]
  43. Lancet Glob Health. 2024 Feb;12(2):e201-e216 [PMID: 38134946]
  44. Front Microbiol. 2022 Nov 02;13:999839 [PMID: 36406439]
  45. J Food Sci Technol. 2013 Dec;50(6):1122-9 [PMID: 24426024]
  46. J Pharm Sci. 2006 Jun;95(6):1173-6 [PMID: 16639718]
  47. Int J Mol Sci. 2023 Feb 07;24(4): [PMID: 36834673]
  48. Antibiotics (Basel). 2021 Feb 25;10(3): [PMID: 33668943]
  49. Jpn Dent Sci Rev. 2018 Feb;54(1):22-29 [PMID: 29628998]
  50. PLoS One. 2018 Dec 12;13(12):e0207574 [PMID: 30540782]
  51. Nucleus (Calcutta). 2022;65(3):399-411 [PMID: 36276225]
  52. PNAS Nexus. 2022 Oct 18;1(5):pgac239 [PMID: 36712365]
  53. Front Microbiol. 2021 Mar 05;12:617485 [PMID: 33763040]
  54. BMC Microbiol. 2020 May 18;20(1):120 [PMID: 32423437]
  55. Gen Dent. 2019 Jan-Feb;67(1):22-26 [PMID: 30644826]
  56. Arch Oral Biol. 2020 Feb;110:104585 [PMID: 31838294]
  57. Antioxidants (Basel). 2023 Apr 08;12(4): [PMID: 37107274]
  58. Molecules. 2021 Apr 06;26(7): [PMID: 33917599]
  59. Foods. 2024 Apr 17;13(8): [PMID: 38672896]
  60. Int J Mol Sci. 2023 Feb 02;24(3): [PMID: 36769243]
  61. Microorganisms. 2023 Apr 24;11(5): [PMID: 37317085]
  62. Plant Physiol. 2020 Sep;184(1):39-52 [PMID: 32636341]
  63. Front Microbiol. 2022 Apr 29;13:895537 [PMID: 35572634]
  64. Life (Basel). 2023 Apr 04;13(4): [PMID: 37109477]
  65. Sci Rep. 2022 Apr 6;12(1):5813 [PMID: 35388099]
  66. Front Microbiol. 2021 Jun 02;12:676108 [PMID: 34149666]
  67. Chin Med. 2018 Apr 17;13:20 [PMID: 29692864]
  68. Molecules. 2020 Mar 17;25(6): [PMID: 32192161]
  69. J Agric Food Chem. 2014 Jul 2;62(26):6147-58 [PMID: 24881464]
  70. Anaerobe. 2021 Aug;70:102367 [PMID: 33872790]
  71. Antibiotics (Basel). 2022 Aug 09;11(8): [PMID: 36009948]
  72. Methods Mol Biol. 2015;1208:233-46 [PMID: 25323511]
  73. Iran J Pharm Res. 2021 Spring;20(2):268-285 [PMID: 34567161]
  74. J Cancer. 2023 May 21;14(9):1479-1485 [PMID: 37325051]
  75. Perspect Medicin Chem. 2014 Aug 28;6:25-64 [PMID: 25232278]
  76. Int J Mol Sci. 2023 Aug 30;24(17): [PMID: 37686230]

MeSH Term

Origanum
Salvia
Plant Extracts
Anti-Bacterial Agents
Biofilms
Microbial Sensitivity Tests
Antioxidants
Dental Caries
Phytochemicals
Bacteria
Humans
Food Microbiology
Flavonoids

Chemicals

Plant Extracts
Anti-Bacterial Agents
Antioxidants
Phytochemicals
Flavonoids

Word Cloud

Created with Highcharts 10.0.0extractsantibacterialstudyactivityantioxidantphytochemicalcapacityoralscreeningplantvariousdeterminationfoodpathogenicstrainsminimumanti-biofilmpropertiesbiofilmformationsignificantefficacypathogensmethodologicalutilizedconductqualitativeanalysisaimingidentifyclassessecondarymetabolitesMoreoverdifferenttypesdeterminedachieveaimaqueousethanolicenzymaticpreparedscreenedactivitiesincludedphenotypicantibioticsusceptibilitypatternbacterialinhibitoryconcentrationbactericidalconcentration-viamicrodilutionbrothtestvitrovaluationefficacies-ofstudiedherbalextractionsResults:evaluatedcompositionanalyzedsamplescontainedbioactivecompoundsphenolicsflavonoidscontributingobservedstrongeffectFurthermoreexhibitednotabledemonstrateddentalcaries'microorganismswellDespitevariationsshowedpromisingincludingresistantalsoinhibitingAlthoughlimitedtwospeciesfacingconstraintslaysgroundworkfutureresearchindicatingtherapeuticpotentialexplorationneededreportunderlyingmechanismsvalidateclinicaltrialsComprehensiveBio-ScreeningPhytochemistryBiologicalCapacityExtractsOralCariogenicFood-OriginPathogenicBacteriaOriganumvulgareSalviatrilobacariogenicfood-originbacteriaphytochemistrybiological

Similar Articles

Cited By