Radiation Effects of Normal B-Lymphoblastoid Cells after Exposing Them to Low-Dose-Rate Irradiation from Tritium β-rays.

Bing Deng, Yi Quan, Zhilin Chen, Heyi Wang
Author Information
  1. Bing Deng: Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
  2. Yi Quan: Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
  3. Zhilin Chen: Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
  4. Heyi Wang: Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.

Abstract

The effects of tritium at low doses and low dose rates have received increasing attention due to recent developments in fusion energy and the associated risks of tritium releases into the environment. Mitochondria have been identified as a potential candidate for studying the effects of low-dose/low-dose-rate radiation, with extensive experimental results obtained using X-ray irradiation. In this study, irradiation experiments were conducted on normal B-lymphoblastoid cells using HTO at varying doses. When compared to X-ray irradiation, no significant differences in cell viability induced by different doses were observed. However, the results of ATP levels showed a significant difference between the irradiated sample at a dose of 500 mGy by tritium beta-rays and the sham-irradiated sample, while the levels obtained with X-ray irradiation were almost identical to the sham-irradiated sample. In contrast, ATP levels for both tritium beta-rays and X-rays at a dose of 1.0 Gy showed minimal differences compared to the sham-irradiated sample. Furthermore, distinct effects at 500 mGy were also confirmed in both ROS levels and apoptosis results obtained through tritium beta-ray irradiation. This suggests that mitochondria might be a potential sensitive target for investigating the effects of tritium beta-ray irradiation.

Keywords

References

  1. Bull Exp Biol Med. 2018 Nov;166(1):178-181 [PMID: 30417285]
  2. Radiat Environ Biophys. 2015 Nov;54(4):379-401 [PMID: 26343037]
  3. Int J Mol Sci. 2013 Mar 19;14(3):6306-44 [PMID: 23528859]
  4. Int J Radiat Biol. 2015 Jan;91(1):1-12 [PMID: 24937368]
  5. Health Phys. 1993 Dec;65(6):713-26 [PMID: 8244716]
  6. Cell Signal. 2023 Sep;109:110794 [PMID: 37422005]
  7. Radiat Res. 2011 Jan;175(1):90-6 [PMID: 21175351]
  8. Health Phys. 1993 Dec;65(6):657-72 [PMID: 8244712]
  9. J Radiat Res. 1995 Jun;36(2):103-11 [PMID: 7473343]
  10. Int J Radiat Biol. 1990 Mar;57(3):543-9 [PMID: 1968947]
  11. Radiat Res. 2022 Jun 1;197(6):583-593 [PMID: 35334490]
  12. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14205-10 [PMID: 20660770]
  13. Radiat Environ Biophys. 2008 Feb;47(1):71-93 [PMID: 18071729]
  14. Apoptosis. 1997;2(3):265-82 [PMID: 14646540]
  15. Int J Radiat Biol. 2009 Dec;85(12):1082-8 [PMID: 19995234]
  16. Health Phys. 2004 Oct;87(4):375-81 [PMID: 15359184]
  17. Radiat Environ Biophys. 2018 Aug;57(3):251-264 [PMID: 29626227]
  18. Radiat Res. 2014 Sep;182(3):322-30 [PMID: 25117624]
  19. Oncogene. 2013 May 30;32(22):2703-11 [PMID: 22869150]
  20. Cell Signal. 2019 Oct;62:109337 [PMID: 31173879]
  21. Int J Radiat Biol. 2017 May;93(5):487-493 [PMID: 28117624]
  22. Radiat Prot Dosimetry. 2006;122(1-4):546-8 [PMID: 17132658]
  23. Radiat Res. 2010 May;173(5):635-44 [PMID: 20426663]
  24. Radiobiologiia. 1990 Jan-Feb;30(1):129-33 [PMID: 2315456]
  25. Environ Mol Mutagen. 2018 Aug;59(7):586-594 [PMID: 30151952]
  26. Free Radic Biol Med. 2005 Sep 1;39(5):651-7 [PMID: 16085183]
  27. Int J Radiat Biol. 1989 Sep;56(3):293-9 [PMID: 2570815]
  28. J Radiol Prot. 2007 Jun;27(2):157-68 [PMID: 17664661]
  29. Sci Rep. 2020 Apr 9;10(1):6131 [PMID: 32273537]
  30. Antioxid Redox Signal. 2012 Jun 1;16(11):1323-67 [PMID: 22146081]
  31. Antioxid Redox Signal. 2014 Mar 20;20(9):1463-80 [PMID: 24180340]
  32. Mutat Res Genet Toxicol Environ Mutagen. 2022 Nov-Dec;883-884:503559 [PMID: 36462795]
  33. J Toxicol Environ Health A. 2006 Feb;69(3-4):201-13 [PMID: 16263691]
  34. Mutagenesis. 2006 Nov;21(6):361-7 [PMID: 17065161]

Grants

  1. 12105266/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0tritiumirradiationeffectsdoselevelssamplelowdosesresultsobtainedX-raysham-irradiatedpotentialradiationusingB-lymphoblastoidcomparedsignificantdifferencescellATPshowed500mGybeta-raysbeta-rayratesreceivedincreasingattentionduerecentdevelopmentsfusionenergyassociatedrisksreleasesenvironmentMitochondriaidentifiedcandidatestudyinglow-dose/low-dose-rateextensiveexperimentalstudyexperimentsconductednormalcellsHTOvaryingviabilityinduceddifferentobservedHoweverdifferenceirradiatedalmostidenticalcontrastX-rays10GyminimalFurthermoredistinctalsoconfirmedROSapoptosissuggestsmitochondriamightsensitivetargetinvestigatingRadiationEffectsNormalB-LymphoblastoidCellsExposingLow-Dose-RateIrradiationTritiumβ-rayseffect

Similar Articles

Cited By