Enhancing Automated Brain Tumor Detection Accuracy Using Artificial Intelligence Approaches for Healthcare Environments.

Akmalbek Abdusalomov, Mekhriddin Rakhimov, Jakhongir Karimberdiyev, Guzal Belalova, Young Im Cho
Author Information
  1. Akmalbek Abdusalomov: Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea. ORCID
  2. Mekhriddin Rakhimov: Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan. ORCID
  3. Jakhongir Karimberdiyev: Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan.
  4. Guzal Belalova: Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan.
  5. Young Im Cho: Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea. ORCID

Abstract

Medical imaging and deep learning models are essential to the early identification and diagnosis of brain cancers, facilitating timely intervention and improving patient outcomes. This research paper investigates the integration of YOLOv5, a state-of-the-art object detection framework, with non-local neural networks (NLNNs) to improve brain tumor detection's robustness and accuracy. This study begins by curating a comprehensive dataset comprising brain MRI scans from various sources. To facilitate effective fusion, the YOLOv5 and NLNNs, K-means+, and spatial pyramid pooling fast+ (SPPF+) modules are integrated within a unified framework. The brain tumor dataset is used to refine the YOLOv5 model through the application of transfer learning techniques, adapting it specifically to the task of tumor detection. The results indicate that the combination of YOLOv5 and other modules results in enhanced detection capabilities in comparison to the utilization of YOLOv5 exclusively, proving recall rates of 86% and 83% respectively. Moreover, the research explores the interpretability aspect of the combined model. By visualizing the attention maps generated by the NLNNs module, the regions of interest associated with tumor presence are highlighted, aiding in the understanding and validation of the decision-making procedure of the methodology. Additionally, the impact of hyperparameters, such as NLNNs kernel size, fusion strategy, and training data augmentation, is investigated to optimize the performance of the combined model.

Keywords

References

  1. Comput Biol Med. 2019 Aug;111:103345 [PMID: 31279167]
  2. Brain Sci. 2023 Sep 14;13(9): [PMID: 37759920]
  3. Medicina (Kaunas). 2022 Aug 12;58(8): [PMID: 36013557]
  4. Int Neurourol J. 2023 Nov;27(Suppl 2):S99-103 [PMID: 38048824]
  5. Inf Sci (N Y). 2019 Jul;490:317-328 [PMID: 32817993]
  6. Diagnostics (Basel). 2023 Apr 17;13(8): [PMID: 37189550]
  7. Sensors (Basel). 2023 Jan 17;23(3): [PMID: 36772117]
  8. BMC Med Inform Decis Mak. 2023 Jan 23;23(1):16 [PMID: 36691030]
  9. Sensors (Basel). 2022 Dec 01;22(23): [PMID: 36502081]
  10. Life (Basel). 2023 Jan 28;13(2): [PMID: 36836705]
  11. Sensors (Basel). 2023 Oct 10;23(20): [PMID: 37896467]
  12. Cancer Epidemiol Biomarkers Prev. 2021 May;30(5):813-821 [PMID: 33653816]
  13. IEEE Trans Biomed Eng. 2012 Jan;59(1):25-9 [PMID: 21813362]
  14. Indian J Cancer. 2021 Apr-Jun;58(2):210-216 [PMID: 33402568]
  15. Healthcare (Basel). 2022 Jun 29;10(7): [PMID: 35885745]
  16. Cancers (Basel). 2023 Aug 18;15(16): [PMID: 37627200]
  17. J Digit Imaging. 2016 Jun;29(3):365-79 [PMID: 26628083]
  18. Sensors (Basel). 2022 Aug 29;22(17): [PMID: 36080958]
  19. Brain Sci. 2020 Feb 22;10(2): [PMID: 32098333]
  20. Nat Rev Clin Oncol. 2019 Aug;16(8):509-520 [PMID: 30733593]
  21. Sensors (Basel). 2023 Mar 24;23(7): [PMID: 37050503]
  22. Front Public Health. 2022 Dec 01;10:959667 [PMID: 36530682]
  23. Sensors (Basel). 2022 Oct 24;22(21): [PMID: 36365819]
  24. Diagnostics (Basel). 2023 Mar 08;13(6): [PMID: 36980333]
  25. Insights Imaging. 2020 Feb 10;11(1):22 [PMID: 32040647]
  26. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5573-6 [PMID: 22255602]
  27. Diagnostics (Basel). 2023 Apr 18;13(8): [PMID: 37189556]
  28. J Imaging. 2022 Jul 22;8(8): [PMID: 35893083]
  29. Neuro Oncol. 2019 Sep 6;21(9):1100-1117 [PMID: 31175826]
  30. Sensors (Basel). 2023 Jan 28;23(3): [PMID: 36772510]
  31. Sensors (Basel). 2021 May 11;21(10): [PMID: 34064735]
  32. Neurosurg Clin N Am. 2011 Apr;22(2):197-206, viii [PMID: 21435571]
  33. Comput Math Methods Med. 2019 Mar 3;2019:4762490 [PMID: 30944578]
  34. Bioengineering (Basel). 2023 Sep 01;10(9): [PMID: 37760133]
  35. Comput Math Methods Med. 2022 Jul 1;2022:2858845 [PMID: 35813426]
  36. Biomed Res Int. 2021 Nov 30;2021:3365043 [PMID: 34912889]
  37. J Med Imaging (Bellingham). 2021 Jan;8(1):014003 [PMID: 33585661]
  38. Semin Perinatol. 2015 Mar;39(2):73-104 [PMID: 25743582]

Word Cloud

Created with Highcharts 10.0.0YOLOv5braintumordetectionNLNNslearningmodeldeepresearchobjectframeworknon-localneuralnetworksdatasetMRIfusionmodulesresultscombinedMedicalimagingmodelsessentialearlyidentificationdiagnosiscancersfacilitatingtimelyinterventionimprovingpatientoutcomespaperinvestigatesintegrationstate-of-the-artimprovedetection'srobustnessaccuracystudybeginscuratingcomprehensivecomprisingscansvarioussourcesfacilitateeffectiveK-means+spatialpyramidpoolingfast+SPPF+integratedwithinunifiedusedrefineapplicationtransfertechniquesadaptingspecificallytaskindicatecombinationenhancedcapabilitiescomparisonutilizationexclusivelyprovingrecallrates86%83%respectivelyMoreoverexploresinterpretabilityaspectvisualizingattentionmapsgeneratedmoduleregionsinterestassociatedpresencehighlightedaidingunderstandingvalidationdecision-makingproceduremethodologyAdditionallyimpacthyperparameterskernelsizestrategytrainingdataaugmentationinvestigatedoptimizeperformanceEnhancingAutomatedBrainTumorDetectionAccuracyUsingArtificialIntelligenceApproachesHealthcareEnvironmentssegmentation

Similar Articles

Cited By