The Anticancer Application of Delivery Systems for Honokiol and Magnolol.

Katarzyna Dominiak, Aleksandra Gosty��ska, Micha�� Szulc, Maciej Stawny
Author Information
  1. Katarzyna Dominiak: Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Pozna��, Poland.
  2. Aleksandra Gosty��ska: Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Pozna��, Poland. ORCID
  3. Micha�� Szulc: Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Pozna��, Poland. ORCID
  4. Maciej Stawny: Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Pozna��, Poland. ORCID

Abstract

Cancer is a leading cause of death worldwide, and the effectiveness of treatment is consistently not at a satisfactory level. This review thoroughly examines the present knowledge and perspectives of honokiol (HON) in cancer therapeutics. The paper synthesizes critical insights into the molecular mechanisms underlying the observed anticancer effects, emphasizing both in vitro and in vivo studies. The effects of HON application, primarily in the common types of cancers, are presented. Because the therapeutic potential of HON may be limited by its physicochemical properties, appropriate delivery systems are sought to overcome this problem. This review discusses the effect of different nanotechnology-based delivery systems on the efficiency of HON. The data presented show that HON exhibits anticancer effects and can be successfully administered to the site of action. Honokiol exerts its anticancer activity through several mechanisms. Moreover, some authors used the combinations of classical anticancer drugs with HON. Such an approach is very interesting and worth further investigation. Understanding HON's multiple molecular mechanisms would provide valuable insights into how HON might be developed as an effective therapeutic. Therefore, further research is needed to explore its specific applications and optimize its efficacy in diverse cancer types.

Keywords

References

  1. Drug Deliv. 2017 Nov;24(1):660-669 [PMID: 28368206]
  2. Arch Pharm Res. 2016 Apr;39(4):516-530 [PMID: 26983827]
  3. Front Neurol. 2023 Jun 22;14:1172860 [PMID: 37426439]
  4. Antioxidants (Basel). 2019 Oct 09;8(10): [PMID: 31600935]
  5. Int J Gynecol Cancer. 2008 Jul-Aug;18(4):652-9 [PMID: 17892458]
  6. Asian Pac J Cancer Prev. ;18(1):3-9 [PMID: 28239999]
  7. Eur J Pharm Sci. 2022 Aug 1;175:106212 [PMID: 35598854]
  8. Eur J Pharm Sci. 2017 Aug 30;106:185-197 [PMID: 28583810]
  9. Oncotarget. 2017 Jan 3;8(1):915-932 [PMID: 27906672]
  10. J Nanosci Nanotechnol. 2010 Jul;10(7):4166-72 [PMID: 21128396]
  11. Rev Obstet Gynecol. 2011;4(1):15-21 [PMID: 21629494]
  12. Int J Nanomedicine. 2020 Mar 09;15:1625-1642 [PMID: 32210557]
  13. Carbohydr Polym. 2020 Jul 15;240:116325 [PMID: 32475585]
  14. Int J Cancer. 2009 Jun 1;124(11):2709-18 [PMID: 19219913]
  15. J Phys Chem B. 2009 Jul 30;113(30):10183-8 [PMID: 19572675]
  16. J Mater Chem B. 2017 Jan 28;5(4):697-706 [PMID: 32263837]
  17. Drug Deliv. 2023 Dec;30(1):2181746 [PMID: 36803115]
  18. Int J Pharm. 2020 Nov 30;590:119899 [PMID: 32971177]
  19. Oncotarget. 2016 Sep 6;7(36):57752-57769 [PMID: 27458163]
  20. Cancers (Basel). 2019 Dec 22;12(1): [PMID: 31877856]
  21. Colloids Surf B Biointerfaces. 2021 Nov;207:112008 [PMID: 34333303]
  22. Regul Toxicol Pharmacol. 2015 Apr;71(3):428-36 [PMID: 25481277]
  23. BMC Cancer. 2008 Aug 16;8:242 [PMID: 18706101]
  24. Int Immunopharmacol. 2020 Jul;84:106535 [PMID: 32361569]
  25. Acta Biomater. 2017 Oct 15;62:144-156 [PMID: 28842335]
  26. Chin Med. 2023 Nov 24;18(1):154 [PMID: 38001538]
  27. J Immunother Cancer. 2020 Aug;8(2): [PMID: 32817393]
  28. J Cancer Res Clin Oncol. 2008 Sep;134(9):937-45 [PMID: 18350317]
  29. Int J Oncol. 2020 Dec;57(6):1245-1261 [PMID: 33174058]
  30. Pharmacol Ther. 2011 May;130(2):157-76 [PMID: 21277893]
  31. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  32. IET Nanobiotechnol. 2020 Dec;14(9):796-802 [PMID: 33399110]
  33. Nanomedicine (Lond). 2020 Jan;15(1):41-54 [PMID: 31868113]
  34. Sci Rep. 2020 May 29;10(1):8771 [PMID: 32472087]
  35. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1154-1169 [PMID: 30043652]
  36. Int J Pharm. 2018 Jul 10;545(1-2):74-83 [PMID: 29715531]
  37. Oncol Lett. 2011 Sep 1;2(5):957-962 [PMID: 22866157]
  38. Sci Rep. 2017 Feb 27;7:43501 [PMID: 28240249]
  39. Phytother Res. 2008 Aug;22(8):1125-32 [PMID: 18570244]
  40. Planta Med. 2018 Nov;84(16):1151-1164 [PMID: 29925102]
  41. Clin Chest Med. 2011 Dec;32(4):605-44 [PMID: 22054876]
  42. Biomaterials. 2017 Oct;141:188-198 [PMID: 28689115]
  43. PLoS One. 2011 Apr 29;6(4):e18490 [PMID: 21559510]
  44. Int J Nanomedicine. 2017 Feb 23;12:1499-1514 [PMID: 28260895]
  45. Int J Pharm. 2022 Mar 5;615:121509 [PMID: 35085734]
  46. Int J Nanomedicine. 2022 Nov 01;17:5137-5151 [PMID: 36345507]
  47. ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18585-18600 [PMID: 29749228]
  48. Int J Biol Macromol. 2022 Apr 1;203:280-291 [PMID: 35093442]
  49. Colloids Surf B Biointerfaces. 2019 May 1;177:1-10 [PMID: 30690424]
  50. Eur J Pharm Biopharm. 2023 Aug;189:224-232 [PMID: 37391090]
  51. Pharmaceutics. 2021 Feb 06;13(2): [PMID: 33561940]
  52. Eur J Pharm Sci. 2020 Apr 15;146:105277 [PMID: 32105783]
  53. Pharmaceutics. 2022 Aug 01;14(8): [PMID: 36015232]
  54. ACS Nano. 2009 Dec 22;3(12):4080-8 [PMID: 19921811]
  55. Int J Nanomedicine. 2017 Oct 11;12:7433-7451 [PMID: 29066893]
  56. Mol Pharm. 2018 Mar 5;15(3):1203-1214 [PMID: 29397747]
  57. Exp Mol Med. 2008 Dec 31;40(6):617-28 [PMID: 19116447]
  58. J Drug Target. 2018 Nov;26(9):793-805 [PMID: 29334266]
  59. Front Bioeng Biotechnol. 2023 Aug 03;11:1249349 [PMID: 37600298]
  60. Colloids Surf B Biointerfaces. 2017 May 1;153:208-219 [PMID: 28249200]
  61. Ann Transl Med. 2021 Nov;9(22):1644 [PMID: 34988153]
  62. Carbohydr Polym. 2020 May 1;235:115981 [PMID: 32122511]

Grants

  1. 2022/45/B/NZ7/01056/National Science Center

Word Cloud

Created with Highcharts 10.0.0HONanticancercancermechanismseffectsdeliveryreviewhonokiolinsightsmoleculartypespresentedtherapeuticsystemsHonokiolCancerleadingcausedeathworldwideeffectivenesstreatmentconsistentlysatisfactorylevelthoroughlyexaminespresentknowledgeperspectivestherapeuticspapersynthesizescriticalunderlyingobservedemphasizingvitrovivostudiesapplicationprimarilycommoncancerspotentialmaylimitedphysicochemicalpropertiesappropriatesoughtovercomeproblemdiscusseseffectdifferentnanotechnology-basedefficiencydatashowexhibitscansuccessfullyadministeredsiteactionexertsactivityseveralMoreoverauthorsusedcombinationsclassicaldrugsapproachinterestingworthinvestigationUnderstandingHON'smultipleprovidevaluablemightdevelopedeffectiveThereforeresearchneededexplorespecificapplicationsoptimizeefficacydiverseAnticancerApplicationDeliverySystemsMagnololbioactivenaturalcompoundsdrugsystemnanoparticles

Similar Articles

Cited By (2)