Cerium Dioxide-Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics.

Ekaterina V Silina, Natalia E Manturova, Olga S Ivanova, Alexander E Baranchikov, Elena B Artyushkova, Olga A Medvedeva, Alexey A Kryukov, Svetlana A Dodonova, Mikhail P Gladchenko, Ekaterina S Vorsina, Maria P Kruglova, Oleg V Kalyuzhin, Yulia G Suzdaltseva, Victor A Stupin
Author Information
  1. Ekaterina V Silina: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia. ORCID
  2. Natalia E Manturova: Pirogov Russian National Research Medical University, Moscow 117997, Russia.
  3. Olga S Ivanova: Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow 119071, Russia. ORCID
  4. Alexander E Baranchikov: Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia. ORCID
  5. Elena B Artyushkova: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia.
  6. Olga A Medvedeva: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia.
  7. Alexey A Kryukov: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia. ORCID
  8. Svetlana A Dodonova: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia. ORCID
  9. Mikhail P Gladchenko: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia.
  10. Ekaterina S Vorsina: Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia.
  11. Maria P Kruglova: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
  12. Oleg V Kalyuzhin: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
  13. Yulia G Suzdaltseva: Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str., 3, Moscow 119333, Russia. ORCID
  14. Victor A Stupin: Pirogov Russian National Research Medical University, Moscow 117997, Russia.

Abstract

PURPOSE OF THE STUDY: the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect.
MATERIALS AND METHODS: Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO)x6HO to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against after 24 h and 48 h of co-incubation.
RESULTS: According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D.
CONCLUSIONS: The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.

Keywords

References

  1. Int J Mol Sci. 2024 Jan 13;25(2): [PMID: 38256075]
  2. Macromol Biosci. 2022 Jul;22(7):e2100475 [PMID: 35388605]
  3. Braz J Microbiol. 2021 Dec;52(4):1701-1718 [PMID: 34558029]
  4. Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2428-2435 [PMID: 30026034]
  5. Nanoscale. 2022 May 16;14(18):6912-6921 [PMID: 35451442]
  6. PLoS One. 2019 Jun 7;14(6):e0217483 [PMID: 31173616]
  7. Microorganisms. 2022 Sep 03;10(9): [PMID: 36144380]
  8. Colloids Surf B Biointerfaces. 2022 Dec;220:112960 [PMID: 36308885]
  9. Int Microbiol. 2021 Nov;24(4):499-506 [PMID: 34028624]
  10. Eur J Trauma Emerg Surg. 2022 Jun;48(3):2349-2357 [PMID: 34215903]
  11. J Mol Endocrinol. 2021 Feb;66(2):141-155 [PMID: 33350981]
  12. Int J Nanomedicine. 2020 Aug 11;15:5951-5961 [PMID: 32848398]
  13. J Microbiol Methods. 2022 Dec;203:106618 [PMID: 36368469]
  14. Int J Biol Macromol. 2023 Aug 15;246:125673 [PMID: 37406905]
  15. Int J Mol Sci. 2023 Sep 24;24(19): [PMID: 37833949]
  16. Polymers (Basel). 2021 Jul 18;13(14): [PMID: 34301108]
  17. Nanomedicine. 2022 Jun;42:102535 [PMID: 35181527]
  18. Mil Med Res. 2023 Aug 17;10(1):36 [PMID: 37587531]
  19. Environ Sci Technol. 2021 Oct 19;55(20):13443-13451 [PMID: 34029070]
  20. Int J Mol Sci. 2021 Jun 30;22(13): [PMID: 34209468]
  21. PLoS One. 2024 Feb 29;19(2):e0298917 [PMID: 38422109]
  22. Am J Public Health. 2022 May;112(5):795-802 [PMID: 35324258]
  23. Pharmaceutics. 2022 May 14;14(5): [PMID: 35631644]
  24. Cells. 2022 Aug 06;11(15): [PMID: 35954282]
  25. Cells. 2021 Jul 08;10(7): [PMID: 34359898]
  26. J Mol Biol. 2019 Aug 23;431(18):3370-3399 [PMID: 31288031]
  27. Environ Pollut. 2019 May;248:834-844 [PMID: 30856499]
  28. Int J Mol Sci. 2024 Feb 06;25(4): [PMID: 38396661]
  29. Nanomaterials (Basel). 2024 Feb 13;14(4): [PMID: 38392727]
  30. Life (Basel). 2024 Jan 03;14(1): [PMID: 38255697]
  31. Environ Sci Pollut Res Int. 2021 Apr;28(14):16962-16981 [PMID: 33638785]
  32. Molecules. 2022 Apr 21;27(9): [PMID: 35566026]
  33. Curr Protoc Immunol. 2015 Nov 02;111:A3.B.1-A3.B.3 [PMID: 26529666]
  34. Cardiol J. 2022;29(6):966-977 [PMID: 33140397]
  35. Adv Drug Deliv Rev. 2019 Jun;146:209-239 [PMID: 30605737]
  36. Dose Response. 2020 Sep 2;18(3):1559325820933518 [PMID: 32952482]
  37. Int J Mol Sci. 2023 Aug 15;24(16): [PMID: 37629007]
  38. JAMA Surg. 2023 Nov 1;158(11):1152-1158 [PMID: 37728889]
  39. J Mater Chem B. 2021 Sep 22;9(36):7291-7301 [PMID: 34355717]
  40. Int J Biol Macromol. 2020 May 15;151:1074-1083 [PMID: 31739020]
  41. J Adv Pharm Technol Res. 2022 Dec;13(Suppl 2):S491-S495 [PMID: 36798577]
  42. Curr Top Med Chem. 2022;22(30):2506-2526 [PMID: 36121083]
  43. J Nanobiotechnology. 2019 Jul 10;17(1):82 [PMID: 31291960]
  44. Comp Biochem Physiol C Toxicol Pharmacol. 2023 Sep;271:109682 [PMID: 37328134]
  45. Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23805-23811 [PMID: 34472168]
  46. J Surg Res. 2020 Oct;254:41-48 [PMID: 32408029]
  47. Eur J Trauma Emerg Surg. 2022 Oct;48(5):3439-3448 [PMID: 34519864]
  48. Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231191493 [PMID: 37642945]
  49. Front Cell Infect Microbiol. 2022 Jul 19;12:900848 [PMID: 35928205]
  50. EMBO Rep. 2020 Dec 3;21(12):e51034 [PMID: 33400359]
  51. ACS Biomater Sci Eng. 2015 Nov 9;1(11):1096-1103 [PMID: 33429551]
  52. Methods Mol Biol. 2023;2649:289-301 [PMID: 37258869]
  53. Int J Mol Sci. 2020 Feb 14;21(4): [PMID: 32075181]
  54. Chem Biol Interact. 2019 Oct 1;312:108814 [PMID: 31509734]
  55. Environ Sci Pollut Res Int. 2021 May;28(20):24889-24916 [PMID: 33765260]
  56. Int J Mol Sci. 2019 Jun 08;20(11): [PMID: 31181755]
  57. Int J Mol Sci. 2021 Oct 13;22(20): [PMID: 34681688]
  58. Materials (Basel). 2022 Dec 08;15(24): [PMID: 36556567]
  59. Nanomedicine. 2022 Feb;40:102483 [PMID: 34748956]
  60. Emerg Med J. 2020 Jan;37(1):25-30 [PMID: 31722885]
  61. Biomolecules. 2021 Oct 23;11(11): [PMID: 34827572]
  62. Plast Reconstr Surg Glob Open. 2024 May 15;12(5):e5812 [PMID: 38752217]
  63. Int J Mol Sci. 2022 Nov 25;23(23): [PMID: 36499070]
  64. J Inorg Biochem. 2020 Aug;209:111117 [PMID: 32473483]
  65. J Nanobiotechnology. 2019 Jul 10;17(1):84 [PMID: 31291944]
  66. Int J Mol Sci. 2022 Dec 26;24(1): [PMID: 36613798]

Grants

  1. 23-65-1004/Russian Science Foundation

MeSH Term

Cerium
Dextrans
Nanocomposites
Humans
Wound Healing
Escherichia coli
Fibroblasts
Anti-Bacterial Agents
Cell Proliferation
Microbial Sensitivity Tests
Cell Line

Chemicals

Cerium
Dextrans
ceric oxide
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0dextranCe2DceriumactivitynanocompositesCe3Dcellhusingconcentrationbestnanodrugwoundhealingantimicrobialeffectpolysaccharide5Ce05DdioxidefibroblastsmultiplicationcreationdifferentratiosnanocompositeNanocompositessynthesizedfourCe1Dphysicochemicalexperimentseffectsstudiedmetabolicproliferativespectrometrygas2448nmsizeincreasingdecreasednanoparticlescompositeslevelnanoceriaratesols10MsignificantlyregisteredtimesPURPOSEOFTHESTUDY:coatingoxidecrystalssynthesizeselectiondevelopacceleratesqualitynewtypeMATERIALSANDMETHODS:nitrate6000DainitialCeNOx6HOweight-1:01:11:21:3seriesperformedcharacterizecreatednanocomposites:UV-spectroscopyX-rayphaseanalysistransmissionelectronmicroscopydynamiclightscatteringIR-spectroscopybiomedicalhumanfibroblastcultureevaluationcellsMTTtestdirectcountingAntimicrobialmasschromatography-massco-incubationRESULTS:Accordingstudiesnanocrystalslessdiffractionpeakscharacteristicidentifiedparticlesmallest<2resultsshowedhighsafetyabsencecytotoxicity100%survivalestablishedC3Dstatisticallyenhancedco-cultured72co-cultivationnanoincreasedhighestgroupdifferencesresultmicrobiologicalstudybacteriostaticfoundinhibitedaverage22-27%suppressed58-77%pronouncedCONCLUSIONS:necessaryphysicalcharacteristicsnanoceria-dextranprovidebiologicaldeterminedstimulatesproliferationmetabolism2allowsreductionmicroorganismthreeselectedsubsequentCeriumDioxide-DextranDevelopmentMedicalProductWoundHealing:PhysicalChemicalBiomedicalCharacteristicschromatographynanoceriumpolysaccharide–metalcomplexesregeneration

Similar Articles

Cited By (4)