Applicability of MDR1 Overexpressing Abcb1KO-MDCKII Cell Lines for Investigating In Vitro Species Differences and Brain Penetration Prediction.

Em��ke S��skuti, N��ra Szilv��sy, Csilla Temesszentandr��si-Ambrus, Zolt��n Urb��n, Oliv��r Cs��kv��ri, Zolt��n Szab��, G��bor Kecskem��ti, ��va Pusztai, Zsuzsanna G��borik
Author Information
  1. Em��ke S��skuti: Charles River Laboratories Hungary, H-1117 Budapest, Hungary.
  2. N��ra Szilv��sy: Charles River Laboratories Hungary, H-1117 Budapest, Hungary.
  3. Csilla Temesszentandr��si-Ambrus: Charles River Laboratories Hungary, H-1117 Budapest, Hungary. ORCID
  4. Zolt��n Urb��n: Charles River Laboratories Hungary, H-1117 Budapest, Hungary.
  5. Oliv��r Cs��kv��ri: Charles River Laboratories Hungary, H-1117 Budapest, Hungary.
  6. Zolt��n Szab��: Department of Medical Chemistry, Albert Szent-Gy��rgyi Medical School, University of Szeged, H-6720 Szeged, Hungary. ORCID
  7. G��bor Kecskem��ti: Department of Medical Chemistry, Albert Szent-Gy��rgyi Medical School, University of Szeged, H-6720 Szeged, Hungary. ORCID
  8. ��va Pusztai: Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary. ORCID
  9. Zsuzsanna G��borik: Charles River Laboratories Hungary, H-1117 Budapest, Hungary.

Abstract

Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted K was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition.

Keywords

References

  1. Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237-52 [PMID: 23256482]
  2. Science. 2009 Mar 27;323(5922):1718-22 [PMID: 19325113]
  3. Pharm Res. 2008 Jun;25(6):1469-83 [PMID: 18219561]
  4. Biochim Biophys Acta. 1997 Feb 27;1360(1):30-8 [PMID: 9061037]
  5. Neuropharmacology. 2007 Feb;52(2):333-46 [PMID: 17045309]
  6. J Neurochem. 2018 Sep;146(6):670-685 [PMID: 29675872]
  7. Drug Metab Dispos. 2024 Jan 9;52(2):95-105 [PMID: 38071533]
  8. AAPS J. 2021 Jun 3;23(4):81 [PMID: 34085128]
  9. J Chem Inf Model. 2016 Nov 28;56(11):2225-2233 [PMID: 27684523]
  10. Biochemistry. 2006 Mar 7;45(9):3020-32 [PMID: 16503657]
  11. Curr Drug Metab. 2003 Aug;4(4):272-91 [PMID: 12871045]
  12. Adv Drug Deliv Rev. 2012 Jan;64(1):95-109 [PMID: 22261306]
  13. Clin Pharmacol Ther. 2000 Jul;68(1):6-12 [PMID: 10945310]
  14. Drug Metab Dispos. 2009 Mar;37(3):635-43 [PMID: 19047468]
  15. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26245-26253 [PMID: 33020312]
  16. Drug Discov Today. 2018 Jul;23(7):1357-1372 [PMID: 29548981]
  17. Int J Mol Sci. 2023 Feb 24;24(5): [PMID: 36901890]
  18. Curr Top Med Chem. 2009;9(2):148-62 [PMID: 19200002]
  19. Mol Pharm. 2019 Mar 4;16(3):1220-1233 [PMID: 30735053]
  20. Mol Pharm. 2011 Apr 4;8(2):571-82 [PMID: 21309545]
  21. Int J Pharm. 2003 Sep 16;263(1-2):113-22 [PMID: 12954186]
  22. Sci Rep. 2021 Sep 8;11(1):17810 [PMID: 34497279]
  23. Xenobiotica. 2011 Aug;41(8):712-9 [PMID: 21657832]
  24. Drug Metab Dispos. 2009 Jul;37(7):1548-56 [PMID: 19389861]
  25. Eur J Pharm Sci. 2018 Sep 15;122:134-143 [PMID: 29936088]
  26. Drug Metab Dispos. 2008 Feb;36(2):452-60 [PMID: 17967933]
  27. Biol Pharm Bull. 2021;44(4):465-473 [PMID: 33790097]
  28. J Pharmacol Exp Ther. 2001 Mar;296(3):723-35 [PMID: 11181899]
  29. Biomolecules. 2022 Nov 09;12(11): [PMID: 36359014]
  30. Mol Pharmacol. 2000 Sep;58(3):624-32 [PMID: 10953057]
  31. Mol Pharm. 2017 Oct 2;14(10):3436-3447 [PMID: 28880093]
  32. Molecules. 2024 Mar 13;29(6): [PMID: 38542901]
  33. Pharm Res. 2007 Feb;24(2):265-76 [PMID: 17191095]
  34. Drug Metab Dispos. 2017 May;45(5):449-456 [PMID: 28209803]
  35. Curr Drug Metab. 2013 Jan;14(1):120-36 [PMID: 23215812]
  36. Physiol Rev. 2006 Oct;86(4):1179-236 [PMID: 17015488]
  37. Drug Metab Pharmacokinet. 2016 Feb;31(1):57-66 [PMID: 26830080]
  38. Bioorg Med Chem Lett. 2020 Sep 15;30(18):127424 [PMID: 32738747]
  39. Drug Metab Dispos. 2014 Sep;42(9):1411-22 [PMID: 24939652]
  40. Pharm Res. 2002 Jul;19(7):976-81 [PMID: 12180550]
  41. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1973-E1982 [PMID: 29440498]
  42. Fluids Barriers CNS. 2013 Jun 08;10(1):21 [PMID: 23758935]
  43. J Pharm Sci. 2011 Aug;100(8):3055-3061 [PMID: 21484807]
  44. AAPS J. 2023 Sep 5;25(5):86 [PMID: 37667061]
  45. Pharm Res. 2006 Jul;23(7):1460-72 [PMID: 16779700]
  46. Xenobiotica. 2012 Mar;42(3):256-65 [PMID: 22017605]
  47. J Pharm Sci. 2016 Feb;105(2):1017-1021 [PMID: 26869442]
  48. J Biol Chem. 2001 Apr 13;276(15):11653-61 [PMID: 11154703]
  49. J Pharm Sci. 2016 Feb;105(2):965-971 [PMID: 26869440]
  50. J Pharm Sci. 2006 Dec;95(12):2673-83 [PMID: 16892207]
  51. Phytother Res. 2009 Jan;23(1):86-91 [PMID: 18688789]
  52. Pharmacol Res Perspect. 2021 Apr;9(2):e00740 [PMID: 33660938]
  53. Bioorg Med Chem Lett. 2020 Dec 1;30(23):127503 [PMID: 32853684]
  54. J Pharm Sci. 2011 Sep;100(9):3939-50 [PMID: 21254069]
  55. Drug Metab Dispos. 2008 Feb;36(2):268-75 [PMID: 17962372]
  56. Clin Pharmacokinet. 2003;42(1):59-98 [PMID: 12489979]
  57. Drug Metab Dispos. 2000 Feb;28(2):107-9 [PMID: 10640504]
  58. J Pharmacol Exp Ther. 2003 Jan;304(1):88-101 [PMID: 12490579]
  59. Curr Med Chem. 2012;19(13):1946-2025 [PMID: 22257057]
  60. Eur J Pharm Sci. 2000 Nov;12(1):31-40 [PMID: 11121731]
  61. Oncotarget. 2018 Dec 14;9(98):37080-37096 [PMID: 30647846]
  62. J Pharmacol Exp Ther. 2007 Oct;323(1):346-55 [PMID: 17646430]
  63. Ther Drug Monit. 2004 Jun;26(3):322-30 [PMID: 15167636]
  64. Biosci Rep. 2016 Jan 28;36(2): [PMID: 26823559]
  65. J Clin Pharmacol. 2004 Mar;44(3):224-33 [PMID: 14973303]
  66. J Pharm Sci. 2019 Jul;108(7):2476-2483 [PMID: 30794795]
  67. J Neurochem. 2011 Apr;117(2):333-45 [PMID: 21291474]
  68. J Biomol Screen. 2011 Sep;16(8):886-94 [PMID: 21832259]
  69. J Pharm Sci. 2023 Jun;112(6):1715-1723 [PMID: 36682487]
  70. J Pharm Sci. 2013 Sep;102(9):3343-55 [PMID: 23650139]
  71. Pharm Res. 2003 Aug;20(8):1200-9 [PMID: 12948018]
  72. Naunyn Schmiedebergs Arch Pharmacol. 2009 Jan;379(1):11-26 [PMID: 18758752]
  73. Pharmaceutics. 2019 Nov 11;11(11): [PMID: 31718023]
  74. J Pharmacol Exp Ther. 1992 Nov;263(2):840-5 [PMID: 1359120]
  75. AAPS J. 2022 Jan 13;24(1):28 [PMID: 35028763]
  76. Pharmacol Res Perspect. 2022 Feb;10(1):e00932 [PMID: 35156331]
  77. Drug Metab Dispos. 2007 Apr;35(4):660-6 [PMID: 17237155]
  78. Bioinformatics. 2010 Apr 1;26(7):966-8 [PMID: 20147306]
  79. J Pharmacol Exp Ther. 2016 Aug;358(2):294-305 [PMID: 27194478]
  80. Drug Metab Dispos. 2009 Apr;37(4):753-60 [PMID: 19158315]
  81. Eur J Pharm Sci. 2020 Jan 15;142:105119 [PMID: 31682973]
  82. Clin Pharmacol Ther. 2004 Jul;76(1):73-84 [PMID: 15229466]
  83. Pharmazie. 2012 May;67(5):384-8 [PMID: 22764568]
  84. Curr Med Chem Anticancer Agents. 2004 Jan;4(1):1-17 [PMID: 14754408]
  85. Mol Pharm. 2011 Aug 1;8(4):1332-41 [PMID: 21707071]
  86. Mol Pharm. 2018 Nov 5;15(11):5103-5113 [PMID: 30222362]
  87. Pharm Res. 2001 Dec;18(12):1660-8 [PMID: 11785684]
  88. J Control Release. 2022 Mar;343:13-30 [PMID: 35026351]
  89. J Med Chem. 2022 Jan 13;65(1):191-216 [PMID: 34928144]
  90. Drug Metab Dispos. 2005 Nov;33(11):1679-87 [PMID: 16093365]
  91. Clin Pharmacol Ther. 2013 Jul;94(1):64-79 [PMID: 23588311]
  92. Drug Metab Dispos. 2019 Apr;47(4):405-411 [PMID: 30683809]
  93. J Pharm Sci. 2007 Jun;96(6):1609-18 [PMID: 17094122]
  94. Mol Pharm. 2012 Mar 5;9(3):629-33 [PMID: 22316009]
  95. ACS Chem Neurosci. 2021 Mar 17;12(6):1007-1017 [PMID: 33651587]
  96. J Pharmacol Exp Ther. 1993 Sep;266(3):1614-9 [PMID: 8103797]
  97. Front Oncol. 2014 Mar 03;4:41 [PMID: 24624364]
  98. Clin Pharmacol Ther. 2021 Aug;110(2):432-442 [PMID: 33675056]
  99. J Pharm Sci. 2021 Jan;110(1):325-337 [PMID: 32946896]
  100. Drug Metab Dispos. 2022 Mar;50(3):299-319 [PMID: 34893475]
  101. Clin Pharmacol Ther. 2013 Jul;94(1):95-112 [PMID: 23588315]
  102. Adv Drug Deliv Rev. 2015 Jun 23;86:17-26 [PMID: 25769815]
  103. Drug Metab Dispos. 2013 Dec;41(12):2012-7 [PMID: 24009309]

Word Cloud

Created with Highcharts 10.0.0MDR1brainpenetrationvitropredictionmodelsspeciesBCRPtransporteranimaldrugsrequirespredictiveperformancedifferencesdataoverexpressingusedBBBsystemknock-outhumanERscellcorrelationusingorthologsinhibitionabundanceImplementing3RinitiativereduceexperimentsCNS-targetingsilicoHoweverstudiesstillindispensableobtainingconcentrationdeterminingrevealprovidereliableIVIVErequiredSystemswidelypredicthighlightingimpactstudyendogenousAbcb1MDCKIIcellsmouseratcynomolgusmonkeyoriginGoodcorrelations83determinedlinesuggestlimitedspecificitieslinesdifferentiatedCNS-penetratingcompoundsbasedhighefficiencysensitivityvivopredictedKhighesttotalERoptimizedscalingfactorsinteractorstesteddigoxinquinidinesubstratesfoundseveralexamplesdependenteithersubstratesummaryassaypotentialearly-stagescreeningICcomparisoncomplexnecessarilyproportionalunderstandingmodesApplicabilityOverexpressingAbcb1KO-MDCKIICellLinesInvestigatingVitroSpeciesDifferencesBrainPenetrationPredictionABCB1Kpuuinhibitorspreclinical

Similar Articles

Cited By