Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach.

Elham Saberian, Andrej Jenča, Adriána Petrášová, Hadi Zare-Zardini, Meysam Ebrahimifar
Author Information
  1. Elham Saberian: Klinika and Akadémia Košice, Pavol Jozef Šafárik University, n.o. Bačíkova 7, 04001 Kosice, Slovakia.
  2. Andrej Jenča: Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, UPJS LF, Pavol Jozef Šafárik University, n.o. Bačíkova 7, 04001 Kosice, Slovakia. ORCID
  3. Adriána Petrášová: Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, UPJS LF, Pavol Jozef Šafárik University, n.o. Bačíkova 7, 04001 Kosice, Slovakia.
  4. Hadi Zare-Zardini: Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran. ORCID
  5. Meysam Ebrahimifar: Department of Toxicity, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza 81796-35875, Iran.

Abstract

This comprehensive review consolidates insights from two sources to emphasize the transformative impact of scaffold-based drug delivery systems in revolutionizing oral cancer therapy. By focusing on their core abilities to facilitate targeted and localized drug administration, these systems enhance therapeutic outcomes significantly. Scaffolds, notably those coated with anti-cancer agents such as cisplatin and paclitaxel, have proven effective in inhibiting oral cancer cell proliferation, establishing a promising avenue for site-specific drug delivery. The application of synthetic scaffolds, including Poly Ethylene Glycol (PEG) and poly(lactic-co-glycolic acid) (PLGA), and natural materials, like collagen or silk, in 3D systems has been pivotal for controlled release of therapeutic agents, executing diverse anti-cancer strategies. A key advancement in this field is the advent of smart scaffolds designed for sequential cancer therapy, which strive to refine drug delivery systems, minimizing surgical interventions, accentuating the significance of 3D scaffolds in oral cancer management. These systems, encompassing local drug-coated scaffolds and other scaffold-based platforms, hold the potential to transform oral cancer treatment through precise interventions, yielding improved patient outcomes. Local drug delivery via scaffolds can mitigate systemic side effects typically associated with chemotherapy, such as nausea, alopecia, infections, and gastrointestinal issues. Post-drug release, scaffolds foster a conducive environment for non-cancerous cell growth, adhering and proliferation, demonstrating restorative potential. Strategies for controlled and targeted drug delivery in oral cancer therapy span injectable self-assembling peptide hydrogels, nanocarriers, and dual drug-loaded nanofibrous scaffolds. These systems ensure prolonged release, synergistic effects, and tunable targeting, enhancing drug delivery efficiency while reducing systemic exposure. Smart scaffolds, capable of sequential drug release, transitioning to cell-friendly surfaces, and enabling combinatorial therapy, hold the promise to revolutionize treatment by delivering precise interventions and optimized outcomes. In essence, scaffold-based drug delivery systems, through their varied forms and functionalities, are reshaping oral cancer therapy. They target drug delivery efficiency, diminish side effects, and present avenues for personalization. Challenges like fabrication intricacy, biocompatibility, and scalability call for additional research. Nonetheless, the perspective on scaffold-based systems in oral cancer treatment is optimistic, as ongoing advancements aim to surmount current limitations and fully leverage their potential in cancer therapy.

Keywords

References

  1. Theranostics. 2011 Feb 17;1:189-200 [PMID: 21547159]
  2. J Control Release. 2023 Jul;359:207-223 [PMID: 37286137]
  3. Cancers (Basel). 2023 Aug 25;15(17): [PMID: 37686542]
  4. Front Bioeng Biotechnol. 2020 Dec 08;8:618931 [PMID: 33425881]
  5. ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23400-23408 [PMID: 28649826]
  6. Pharmaceutics. 2021 Nov 18;13(11): [PMID: 34834369]
  7. Drug Deliv. 2022 Dec;29(1):1184-1200 [PMID: 35403517]
  8. Biomater Sci. 2021 Nov 23;9(23):7984-7995 [PMID: 34710207]
  9. Asian Pac J Cancer Prev. 2023 Sep 01;24(9):3291-3296 [PMID: 37774084]
  10. Front Chem. 2019 Oct 11;7:675 [PMID: 31681729]
  11. Radiol Oncol. 2014 Jan 22;48(1):1-10 [PMID: 24587773]
  12. Nanoscale. 2012 Sep 21;4(18):5686-93 [PMID: 22875402]
  13. Carbohydr Polym. 2017 Feb 10;157:1215-1225 [PMID: 27987825]
  14. Iran J Public Health. 2018 Aug;47(8):1218-1219 [PMID: 30186799]
  15. Biomaterials. 2019 Oct;217:119311 [PMID: 31279100]
  16. Int J Radiat Oncol Biol Phys. 2016 Oct 1;96(2):273-279 [PMID: 27598802]
  17. Oral Oncol. 2009 Apr-May;45(4-5):309-16 [PMID: 18804401]
  18. Front Mol Biosci. 2020 Aug 20;7:193 [PMID: 32974385]
  19. Int J Cancer. 2015 Mar 1;136(5):E359-86 [PMID: 25220842]
  20. Biomed Pharmacother. 2024 Jan;170:115973 [PMID: 38064969]
  21. Nanomedicine (Lond). 2015;10(13):1993-5 [PMID: 26096565]
  22. J Drug Target. 2008 Feb;16(2):108-23 [PMID: 18274932]
  23. Life (Basel). 2021 Dec 29;12(1): [PMID: 35054441]
  24. Front Oral Health. 2021 Jan 25;1:603160 [PMID: 35047986]
  25. Front Physiol. 2019 Apr 16;10:399 [PMID: 31040792]
  26. Mol Clin Oncol. 2018 Feb;8(2):219-226 [PMID: 29435282]
  27. F1000Res. 2020 Apr 2;9:229 [PMID: 32399208]
  28. Asian Pac J Cancer Prev. 2023 Nov 01;24(11):3985-3991 [PMID: 38019259]
  29. Front Cell Dev Biol. 2021 Feb 22;9:628103 [PMID: 33718365]
  30. Chem Biol Drug Des. 2016 Oct;88(4):568-73 [PMID: 27178305]
  31. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:1246-1262 [PMID: 28575964]
  32. Cancer Imaging. 2010 Mar 16;10:62-72 [PMID: 20233682]
  33. CA Cancer J Clin. 2018 Jan;68(1):7-30 [PMID: 29313949]
  34. ACS Omega. 2020 Aug 11;5(33):20724-20733 [PMID: 32875205]
  35. Int J Clin Oncol. 2014;19(3):423-30 [PMID: 24682763]
  36. Asian Pac J Cancer Prev. ;18(1):65-68 [PMID: 28240011]
  37. Front Pharmacol. 2020 Dec 17;11:616101 [PMID: 33391000]
  38. Adv Drug Deliv Rev. 2018 May;130:17-38 [PMID: 30009886]
  39. Ecancermedicalscience. 2019;13:961 [PMID: 31537986]
  40. Int J Epidemiol. 2010 Feb;39(1):166-81 [PMID: 20022926]
  41. Pharmaceutics. 2022 Dec 03;14(12): [PMID: 36559206]
  42. Int J Nanomedicine. 2018 Nov 19;13:7623-7631 [PMID: 30538447]
  43. Sci Rep. 2018 Jun 11;8(1):8907 [PMID: 29891842]
  44. Bioact Mater. 2022 Jan 26;17:300-319 [PMID: 35386452]
  45. PLoS One. 2013 Oct 16;8(10):e75345 [PMID: 24146752]
  46. Int J Bioprint. 2021 Oct 1;7(4):418 [PMID: 34805597]
  47. Front Bioeng Biotechnol. 2023 Mar 01;11:1139782 [PMID: 36937769]
  48. Nat Commun. 2019 Nov 26;10(1):5380 [PMID: 31772164]
  49. J Control Release. 2014 Sep 28;190:451-64 [PMID: 24794900]
  50. Turk J Pharm Sci. 2021 Sep 1;18(4):483-491 [PMID: 34496555]
  51. Pharmaceutics. 2023 Dec 19;16(1): [PMID: 38276483]
  52. Acta Pharmacol Sin. 2020 Jul;41(7):895-901 [PMID: 32467568]
  53. Artif Cells Nanomed Biotechnol. 2023 Dec;51(1):148-157 [PMID: 36951171]
  54. Science. 1993 May 14;260(5110):920-6 [PMID: 8493529]
  55. Curr Stem Cell Res Ther. 2019;14(4):337-343 [PMID: 30516113]
  56. Curr Opin Investig Drugs. 2010 Jun;11(6):615-28 [PMID: 20496256]
  57. Adv Mater. 2020 Jun;32(22):e2000055 [PMID: 32227413]
  58. Ann Biomed Eng. 2017 Jan;45(1):164-179 [PMID: 27169894]
  59. Adv Drug Deliv Rev. 2015 Jan;81:128-41 [PMID: 24859533]
  60. Polymers (Basel). 2022 Mar 02;14(5): [PMID: 35267833]
  61. Mol Cytogenet. 2016 Nov 23;9:85 [PMID: 27895714]
  62. J Biomater Sci Polym Ed. 2017 Nov;28(16):1797-1825 [PMID: 28707508]
  63. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  64. Mater Sci Eng C Mater Biol Appl. 2018 Sep 1;90:148-158 [PMID: 29853077]
  65. J Dent (Shiraz). 2023 Sep;24(3):285-292 [PMID: 37727353]
  66. Bioprinting. 2021 Jun;22: [PMID: 34368488]
  67. Oncologist. 2002;7(6):516-30 [PMID: 12490739]
  68. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  69. J Endod. 2024 Mar;50(3):351-354 [PMID: 38154652]
  70. Pharmaceutics. 2019 Jun 30;11(7): [PMID: 31262096]
  71. Asian Pac J Cancer Prev. ;18(3):629-632 [PMID: 28440967]
  72. Sci Rep. 2021 Jun 22;11(1):13065 [PMID: 34158526]
  73. Biomater Res. 2018 Sep 26;22:27 [PMID: 30275970]
  74. Front Bioeng Biotechnol. 2020 Nov 30;8:612950 [PMID: 33330440]
  75. Adv Healthc Mater. 2017 Jan;6(2): [PMID: 27886461]
  76. RSC Adv. 2018 Oct 10;8(61):34773-34782 [PMID: 35547028]
  77. J Multidiscip Healthc. 2021 Jul 05;14:1711-1724 [PMID: 34267523]
  78. Mol Cancer Ther. 2018 Jun;17(6):1196-1206 [PMID: 29592881]

Word Cloud

Created with Highcharts 10.0.0drugcancerdeliverysystemsoralscaffoldstherapyscaffold-basedreleaseoutcomesinterventionspotentialtreatmenteffectstargetedtherapeuticanti-canceragentscellproliferationlike3DcontrolledsequentialholdprecisesystemicsidenanocarriersefficiencycomprehensivereviewconsolidatesinsightstwosourcesemphasizetransformativeimpactrevolutionizingfocusingcoreabilitiesfacilitatelocalizedadministrationenhancesignificantlyScaffoldsnotablycoatedcisplatinpaclitaxelproveneffectiveinhibitingestablishingpromisingavenuesite-specificapplicationsyntheticincludingPolyEthyleneGlycolPEGpolylactic-co-glycolicacidPLGAnaturalmaterialscollagensilkpivotalexecutingdiversestrategieskeyadvancementfieldadventsmartdesignedstriverefineminimizingsurgicalaccentuatingsignificancemanagementencompassinglocaldrug-coatedplatformstransformyieldingimprovedpatientLocalviacanmitigatetypicallyassociatedchemotherapynauseaalopeciainfectionsgastrointestinalissuesPost-drugfosterconduciveenvironmentnon-cancerousgrowthadheringdemonstratingrestorativeStrategiesspaninjectableself-assemblingpeptidehydrogelsdualdrug-loadednanofibrousensureprolongedsynergistictunabletargetingenhancingreducingexposureSmartcapabletransitioningcell-friendlysurfacesenablingcombinatorialpromiserevolutionizedeliveringoptimizedessencevariedformsfunctionalitiesreshapingtargetdiminishpresentavenuespersonalizationChallengesfabricationintricacybiocompatibilityscalabilitycalladditionalresearchNonethelessperspectiveoptimisticongoingadvancementsaimsurmountcurrentlimitationsfullyleverageApplicationScaffold-BasedDrugDeliveryOralCancerTreatment:NovelApproachscaffold

Similar Articles

Cited By