Muscle-derived microRNAs correlated with thigh lean mass gains during progressive resistance training in older adults.

Samia M O'Bryan, Kaleen M Lavin, Zachary A Graham, Devin J Drummer, S Craig Tuggle, Kendall Van Keuren-Jensen, Rebecca Reiman, Eric Alsop, Madhavi P Kadakia, Michael P Craig, Jin Zhang, Marcas M Bamman
Author Information
  1. Samia M O'Bryan: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States. ORCID
  2. Kaleen M Lavin: Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States. ORCID
  3. Zachary A Graham: Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  4. Devin J Drummer: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States. ORCID
  5. S Craig Tuggle: Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States.
  6. Kendall Van Keuren-Jensen: Translational Genomics Research Institute, Phoenix, Arizona, United States.
  7. Rebecca Reiman: Translational Genomics Research Institute, Phoenix, Arizona, United States.
  8. Eric Alsop: Translational Genomics Research Institute, Phoenix, Arizona, United States.
  9. Madhavi P Kadakia: Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States.
  10. Michael P Craig: Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States.
  11. Jin Zhang: Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States.
  12. Marcas M Bamman: UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States. ORCID

Abstract

Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared with younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNAs (miRNAs) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults ( = 18, 11 M/7 F, 66 �� 1 yr) who underwent three times per wk RT for 30 wk [e.g., high intensity three times/wk (HHH, = 9) or alternating high-low-high (HLH) intensity ( = 9)], after a standardized 4-wk washin. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using weighted gene correlation network analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change [as measured by dual-energy X-ray absorptiometry (DXA)]. Although no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT to maximize skeletal muscle mass accrual in older adults. In this work, we identified a set of microRNAs correlated with thigh lean mass gains in a group of older adults. To our knowledge, this is the first time these microRNAs have been identified as novel predictive biomarkers correlating with lean mass gains in aging adults. As biomarkers, these may help interventionalists identify older individuals that are positively responding to an exercise intervention.

Keywords

References

  1. Sci Rep. 2018 Jul 3;8(1):10069 [PMID: 29968742]
  2. Semin Cell Dev Biol. 2021 Nov;119:89-100 [PMID: 34016524]
  3. Med Sci Sports Exerc. 2011 Jul;43(7):1177-87 [PMID: 21131862]
  4. Eur J Cancer. 2017 Feb;72:1-11 [PMID: 27997852]
  5. J Appl Physiol (1985). 2011 Feb;110(2):309-17 [PMID: 21030674]
  6. Cell Biosci. 2019 Feb 15;9:19 [PMID: 30815248]
  7. Physiol Genomics. 2021 May 1;53(5):206-221 [PMID: 33870722]
  8. Cell Metab. 2019 Oct 1;30(4):656-673 [PMID: 31447320]
  9. J Appl Physiol (1985). 2022 Apr 1;132(4):984-994 [PMID: 35238652]
  10. Mol Metab. 2019 Oct;28:1-13 [PMID: 31444134]
  11. J Gerontol A Biol Sci Med Sci. 2017 Oct 1;72(10):1319-1326 [PMID: 27927764]
  12. BMC Genomics. 2018 May 5;19(1):331 [PMID: 29728066]
  13. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20729-20740 [PMID: 32796104]
  14. FASEB J. 2014 Sep;28(9):4133-47 [PMID: 24928197]
  15. Age Ageing. 2014 Nov;43(6):748-59 [PMID: 25241753]
  16. BMC Genomics. 2018 Mar 6;19(1):180 [PMID: 29510677]
  17. J Biol Chem. 2013 Feb 8;288(6):4389-404 [PMID: 23266826]
  18. J Cell Physiol. 2018 Mar;233(3):2007-2018 [PMID: 28181241]
  19. Cell Stem Cell. 2016 Dec 1;19(6):800-807 [PMID: 27641304]
  20. Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 [PMID: 24275495]
  21. J Frailty Aging. 2019;8(2):93-99 [PMID: 30997923]
  22. Nucleic Acids Res. 2014;42(17):e133 [PMID: 25063298]
  23. Methods Mol Biol. 2014;1107:33-50 [PMID: 24272430]
  24. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 [PMID: 31114916]
  25. Cell Mol Life Sci. 2019 Jul;76(13):2559-2570 [PMID: 30976839]
  26. Nat Commun. 2016 Jan 29;7:10509 [PMID: 26823289]
  27. Curr Opin Clin Nutr Metab Care. 2013 May;16(3):258-66 [PMID: 23449000]
  28. Exerc Sport Sci Rev. 2018 Apr;46(2):92-96 [PMID: 29346163]
  29. J Appl Physiol (1985). 2001 Aug;91(2):569-80 [PMID: 11457767]
  30. Muscles Ligaments Tendons J. 2014 Feb 24;3(4):346-50 [PMID: 24596700]
  31. Mol Cell Biol. 2015 Sep 1;35(17):2892-909 [PMID: 26055324]
  32. Skelet Muscle. 2011 Jan 24;1(1):4 [PMID: 21798082]
  33. J Cachexia Sarcopenia Muscle. 2014 Dec;5(4):253-9 [PMID: 25425503]
  34. J Neuromuscul Dis. 2015;2(1):1-11 [PMID: 27547731]
  35. Nat Biotechnol. 2018 Sep;36(8):746-757 [PMID: 30010675]
  36. Age Ageing. 2019 Jan 1;48(1):16-31 [PMID: 30312372]
  37. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  38. J Appl Physiol (1985). 2013 Sep;115(6):937-48 [PMID: 23681911]
  39. J Am Geriatr Soc. 2015 Apr;63(4):817-8 [PMID: 25900496]
  40. Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E937-46 [PMID: 16772322]
  41. J Appl Physiol (1985). 2020 Dec 1;129(6):1493-1504 [PMID: 33054657]
  42. Physiol Genomics. 2023 Apr 1;55(4):194-212 [PMID: 36939205]
  43. Exp Gerontol. 2017 Dec 1;99:98-109 [PMID: 28964826]
  44. Exp Gerontol. 2018 Jun;106:116-124 [PMID: 29481967]
  45. J Cell Mol Med. 2009 Aug;13(8B):2424-2435 [PMID: 18662193]
  46. Cell Syst. 2019 Apr 24;8(4):352-357.e3 [PMID: 30956140]
  47. Compr Physiol. 2022 Mar 9;12(2):3193-3279 [PMID: 35578962]
  48. Stem Cells. 2021 Jun;39(6):737-749 [PMID: 33529408]
  49. Int J Mol Sci. 2019 Jul 02;20(13): [PMID: 31269677]
  50. Aging Dis. 2011 Dec;2(6):487-500 [PMID: 22288022]
  51. Physiol Genomics. 2013 Jun 17;45(12):499-507 [PMID: 23632419]
  52. J Stat Softw. 2012 Mar;46(11): [PMID: 23050260]
  53. J Strength Cond Res. 2013 Aug;27(8):2225-34 [PMID: 23168371]
  54. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  55. Skelet Muscle. 2020 Nov 27;10(1):34 [PMID: 33243288]
  56. Nat Rev Mol Cell Biol. 2019 Jan;20(1):21-37 [PMID: 30108335]
  57. PLoS One. 2013 Sep 02;8(9):e73589 [PMID: 24023888]
  58. Biosci Rep. 2021 Jan 29;41(1): [PMID: 33398324]
  59. J Gerontol A Biol Sci Med Sci. 2000 Jul;55(7):B347-54 [PMID: 10898248]
  60. J Am Med Dir Assoc. 2016 Aug 1;17(8):675-7 [PMID: 27470918]
  61. Front Immunol. 2022 Feb 25;13:828191 [PMID: 35281063]
  62. J Diabetes Metab Disord. 2017 May 16;16:21 [PMID: 28523252]
  63. J Musculoskelet Neuronal Interact. 2013 Sep;13(3):320-8 [PMID: 23989253]
  64. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  65. J Appl Physiol (1985). 2017 Mar 1;122(3):559-570 [PMID: 28035017]
  66. Sports Med. 2020 Nov;50(11):1983-1999 [PMID: 32740889]
  67. Bone. 2015 Nov;80:131-142 [PMID: 26453502]
  68. J Appl Physiol (1985). 2020 Jan 1;128(1):87-99 [PMID: 31751180]
  69. Cells. 2021 Nov 05;10(11): [PMID: 34831256]
  70. Front Physiol. 2021 Jun 23;12:684899 [PMID: 34248671]
  71. Exerc Sport Sci Rev. 2018 Apr;46(2):86-91 [PMID: 29346160]
  72. J Appl Physiol (1985). 2007 Jan;102(1):306-13 [PMID: 17008435]
  73. Tumour Biol. 2016 Oct;37(10):13479-13487 [PMID: 27465552]
  74. Immunol Cell Biol. 2016 Feb;94(2):140-5 [PMID: 26526620]
  75. NAR Genom Bioinform. 2020 Sep;2(3):lqaa078 [PMID: 33015620]

Grants

  1. P2C HD086851/NICHD NIH HHS
  2. T32 HD071866/NICHD NIH HHS
  3. R01 AG017896/NIA NIH HHS
  4. 5R01AG017896-07/HHS | National Institutes of Health (NIH)
  5. T32HD071866/HHS | National Institutes of Health (NIH)
  6. P2CHD086851/HHS | National Institutes of Health (NIH)
  7. IK2 RX002781/RRD VA

MeSH Term

Humans
Resistance Training
MicroRNAs
Male
Aged
Muscle, Skeletal
Female
Thigh
Aging
Exosomes
Middle Aged
Body Composition

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0massadultsmuscleolderRTtrainingmiRNAsexercisemodulesleangainsmayagingintensityskeletal=thighidentifiedpotentialbiomarkersmicroRNAsdysregulatedkeypathwaysmiRNAthreewk9]correlationTLMdosecorrelatedresistanceResistanceremainseffectivetreatmentage-relateddeclinesHowevermanyexperienceattenuatedhypertrophyresponsecomparedyoungerattributedunderlyingmolecularprocessesexacerbatedimproperlyprescribedweeklyvolumeand/orfrequencydosesMicroRNAsepigeneticregulatorsimpactsignalingproteinexpressionwithincellsdynamicresponsivestimulioftendiseasesstudyuseduntargetedmiRNA-seqexamineserum-derivedexosomes1811M/7F66��1yrunderwenttimesper30[eghightimes/wkHHHalternatinghigh-low-highHLHstandardized4-wkwashinWithintissueclusteredbasedpairwiseusingweightedgenenetworkanalysisWGCNAModulestestedassociationmagnitudeRT-inducedchange[asmeasureddual-energyX-rayabsorptiometryDXAAlthoughuniqueassociatedirrespectiveUsingmiRNA-targetinteractionsanalyzedsignificantregulatoryinvolvementbiologicalFindingspointtowardinformativealsoevaluatedtherapeutictargetsadjuvantmaximizeaccrualworksetgroupknowledgefirsttimenovelpredictivecorrelatinghelpinterventionalistsidentifyindividualspositivelyrespondinginterventionMuscle-derivedprogressivephysiology

Similar Articles

Cited By

No available data.