Post-mortem changes of anisotropic mechanical properties in the porcine brain assessed by MR elastography.

Shuaihu Wang, Kevin N Eckstein, Charlotte A Guertler, Curtis L Johnson, Ruth J Okamoto, Matthew D J McGarry, Philip V Bayly
Author Information
  1. Shuaihu Wang: Washington University in St. Louis, Mechanical Engineering and Material Science, United States.
  2. Kevin N Eckstein: Washington University in St. Louis, Mechanical Engineering and Material Science, United States.
  3. Charlotte A Guertler: Washington University in St. Louis, Mechanical Engineering and Material Science, United States.
  4. Curtis L Johnson: University of Delaware, Biomedical Engineering, United States.
  5. Ruth J Okamoto: Washington University in St. Louis, Mechanical Engineering and Material Science, United States.
  6. Matthew D J McGarry: Dartmouth College, Thayer School of Engineering, United States.
  7. Philip V Bayly: Washington University in St. Louis, Mechanical Engineering and Material Science, United States.

Abstract

Knowledge of the mechanical properties of brain tissue is essential to understanding the mechanisms underlying traumatic brain injury (TBI) and to creating accurate computational models of TBI and neurosurgical simulation. Brain white matter, which is composed of aligned, myelinated, axonal fibers, is structurally anisotropic. White matter also exhibits mechanical anisotropy, as measured by magnetic resonance elastography (MRE), but measurements of anisotropy obtained by mechanical testing of white matter have been inconsistent. The minipig has a gyrencephalic brain with similar white matter and gray matter proportions to humans and therefore provides a relevant model for human brain mechanics. In this study, we compare estimates of anisotropic mechanical properties of the minipig brain obtained by identical, non-invasive methods in the live ( and dead animals . To do so, we combine wave displacement fields from MRE and fiber directions derived from diffusion tensor imaging (DTI) with a finite element-based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal alive and at specific times post-mortem. These maps show that white matter is stiffer, more dissipative, and more anisotropic than gray matter when the minipig is alive, but that these differences largely disappear post-mortem, with the exception of tensile anisotropy. Overall, brain tissue becomes stiffer, less dissipative, and less mechanically anisotropic post-mortem. These findings emphasize the importance of testing brain tissue properties .
Statement of Significance: In this study, MRE and DTI in the minipig were combined to estimate, for the first time, anisotropic mechanical properties in the living brain and in the same brain after death. Significant differences were observed in the anisotropic behavior of brain tissue post-mortem. These results demonstrate the importance of measuring brain tissue properties as well as and provide new quantitative data for the development of computational models of brain biomechanics.

Keywords

References

  1. Phys Med Biol. 2011 Oct 7;56(19):6379-400 [PMID: 21908903]
  2. Neuroimage. 2023 Aug 15;277:120234 [PMID: 37369255]
  3. Magn Reson Med. 2003 Jan;49(1):193-7 [PMID: 12509838]
  4. Med Image Anal. 2002 Jun;6(2):93-108 [PMID: 12044998]
  5. Med Biol Eng Comput. 2008 Aug;46(8):759-66 [PMID: 18521645]
  6. Acta Biomater. 2020 Jan 1;101:395-402 [PMID: 31726251]
  7. Ann Biomed Eng. 2012 Jul;40(7):1530-44 [PMID: 22298329]
  8. Brain Commun. 2019 Oct 24;1(1):fcz030 [PMID: 32954270]
  9. AJNR Am J Neuroradiol. 2011 Sep;32(8):1518-24 [PMID: 21659482]
  10. Magn Reson Med. 2013 Aug;70(2):404-12 [PMID: 23001771]
  11. J Biomech. 2023 Jul;156:111676 [PMID: 37329640]
  12. J Biomech. 2018 Mar 1;69:10-18 [PMID: 29395225]
  13. J Biomech Eng. 2020 Mar 1;142(3): [PMID: 31980814]
  14. Magn Reson Med. 1999 Oct;42(4):779-86 [PMID: 10502768]
  15. J Cereb Blood Flow Metab. 2018 Jan;38(1):116-125 [PMID: 28151092]
  16. Neuroimage. 2009 Jul 1;46(3):652-7 [PMID: 19281851]
  17. Free Neuropathol. 2023 May 31;4: [PMID: 37384330]
  18. J Mech Behav Biomed Mater. 2023 Feb;138:105652 [PMID: 36610282]
  19. J Mech Behav Biomed Mater. 2013 Jul;23:117-32 [PMID: 23680651]
  20. Front Bioeng Biotechnol. 2021 May 05;9:666456 [PMID: 34026743]
  21. Magn Reson Med. 2022 Oct;88(4):1659-1672 [PMID: 35649188]
  22. J Acoust Soc Am. 2021 Feb;149(2):1097 [PMID: 33639778]
  23. Magn Reson Med. 2017 Dec;78(6):2360-2372 [PMID: 28097687]
  24. J Cereb Blood Flow Metab. 2016 May;36(5):954-64 [PMID: 26661178]
  25. Br Med Bull. 2022 Mar 21;141(1):33-46 [PMID: 35107134]
  26. Biophys J. 1994 Jan;66(1):259-67 [PMID: 8130344]
  27. Comput Methods Biomech Biomed Engin. 2002 Aug;5(4):283-90 [PMID: 12186707]
  28. Med Eng Phys. 2022 Mar;101:103767 [PMID: 35232553]
  29. Science. 2003 Sep 26;301(5641):1870-4 [PMID: 14512617]
  30. Neurobiol Aging. 2018 May;65:158-167 [PMID: 29494862]
  31. Med Image Anal. 2018 Feb;44:126-142 [PMID: 29247876]
  32. J Biomech. 2004 Sep;37(9):1339-52 [PMID: 15275841]
  33. Magn Reson Med. 2005 Feb;53(2):372-87 [PMID: 15678538]
  34. J Magn Reson B. 1996 Jun;111(3):209-19 [PMID: 8661285]
  35. J Biomech. 2008 Oct 20;41(14):2954-9 [PMID: 18805534]
  36. J Biomech. 2000 Nov;33(11):1369-76 [PMID: 10940395]
  37. Ann Biomed Eng. 2015 Jul;43(7):1640-53 [PMID: 25824370]
  38. Phys Med Biol. 2007 Dec 21;52(24):7281-94 [PMID: 18065839]
  39. Neuropharmacology. 2008 Sep;55(3):310-8 [PMID: 18308346]
  40. Med Image Anal. 2022 May;78:102432 [PMID: 35358836]
  41. Brain Multiphys. 2022;3: [PMID: 36340644]
  42. AJNR Am J Neuroradiol. 2004 May;25(5):699-705 [PMID: 15140707]
  43. Glia. 2012 Nov;60(11):1709-20 [PMID: 22821441]
  44. Neuroimage. 2010 Aug 15;52(2):415-28 [PMID: 20420929]
  45. J Mech Behav Biomed Mater. 2018 Jul;83:120-125 [PMID: 29702328]
  46. Magn Reson Imaging. 2009 Jul;27(6):865-70 [PMID: 19152773]
  47. Phys Med Biol. 2018 Jul 19;63(14):145021 [PMID: 29877194]
  48. Trends Neurosci. 2014 Nov;37(11):620-8 [PMID: 25236348]
  49. J Mech Behav Biomed Mater. 2023 May;141:105744 [PMID: 36893687]
  50. Toxicol Pathol. 2016 Apr;44(3):299-314 [PMID: 26839324]
  51. J Biomech Eng. 2017 May 1;139(5): [PMID: 28267188]
  52. Biomech Model Mechanobiol. 2017 Jun;16(3):907-920 [PMID: 27933417]
  53. J Head Trauma Rehabil. 2006 Nov-Dec;21(6):544-8 [PMID: 17122685]
  54. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  55. J Biomech. 2015 Nov 26;48(15):4002-4009 [PMID: 26476762]
  56. Geroscience. 2020 Feb;42(1):311-321 [PMID: 31865527]
  57. Neuroimage. 2014 Oct 1;99:244-55 [PMID: 24852458]
  58. Neuroimage. 2015 Feb 1;106:284-99 [PMID: 25433212]
  59. Dev Cogn Neurosci. 2018 Nov;34:27-33 [PMID: 29906788]
  60. Biochem Cell Biol. 2018 Aug;96(4):391-406 [PMID: 29370536]
  61. J Biomech Eng. 2020 Jul 1;142(7): [PMID: 32006012]
  62. Biomed Phys Eng Express. 2022 Apr 05;8(3): [PMID: 35299161]
  63. J R Soc Interface. 2012 Nov 7;9(76):2899-910 [PMID: 22675163]
  64. J Mech Behav Biomed Mater. 2018 Aug;84:88-98 [PMID: 29754046]
  65. Acta Biomater. 2016 Sep 15;42:265-272 [PMID: 27475531]
  66. Magn Reson Med. 2001 Feb;45(2):299-310 [PMID: 11180438]
  67. J Neurosci Methods. 2021 Apr 15;354:109107 [PMID: 33675840]
  68. Science. 1995 Sep 29;269(5232):1854-7 [PMID: 7569924]
  69. Magn Reson Med. 2009 Mar;61(3):668-77 [PMID: 19097236]
  70. J Mech Behav Biomed Mater. 2021 Jul;119:104483 [PMID: 33838445]
  71. Acta Biomater. 2017 Sep 15;60:315-329 [PMID: 28658600]
  72. NMR Biomed. 2013 Nov;26(11):1387-94 [PMID: 23640745]
  73. Annu Rev Biomed Eng. 2013;15:227-51 [PMID: 23642242]
  74. J Mech Behav Biomed Mater. 2022 Feb;126:105046 [PMID: 34953435]
  75. MAGMA. 2022 Jun;35(3):375-387 [PMID: 34714448]
  76. J Biomech. 2016 May 3;49(7):1042-1049 [PMID: 26920505]
  77. Biorheology. 2010;47(5-6):255-76 [PMID: 21403381]
  78. Med Image Anal. 2001 Dec;5(4):237-54 [PMID: 11731304]
  79. J Neurotrauma. 2019 Jan 15;36(2):250-263 [PMID: 29681212]
  80. Biomech Model Mechanobiol. 2017 Aug;16(4):1269-1293 [PMID: 28233136]
  81. J Mech Behav Biomed Mater. 2016 Jun;59:538-546 [PMID: 27032311]
  82. Neuroimage. 2006 Jul 1;31(3):1116-28 [PMID: 16545965]
  83. Brain Commun. 2020;2(1):fcz049 [PMID: 31998866]
  84. Acta Biomater. 2011 Dec;7(12):4090-101 [PMID: 21742064]
  85. Magn Reson Med. 2001 May;45(5):827-37 [PMID: 11323809]
  86. Magn Reson Med. 2012 Nov;68(5):1410-22 [PMID: 22252792]

Grants

  1. R01 EB027577/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0brainanisotropicmechanicalpropertiesmattertissueminipigwhitepost-mortemanisotropyelastographyMRETBIcomputationalmodelsBrainresonanceobtainedtestinggraystudytensorimagingDTIalivestifferdissipativedifferenceslessimportancePost-mortemchangesKnowledgeessentialunderstandingmechanismsunderlyingtraumaticinjurycreatingaccurateneurosurgicalsimulationcomposedalignedmyelinatedaxonalfibersstructurallyWhitealsoexhibitsmeasuredmagneticmeasurementsinconsistentgyrencephalicsimilarproportionshumansthereforeprovidesrelevantmodelhumanmechanicscompareestimatesidenticalnon-invasivemethodslivedeadanimalscombinewavedisplacementfieldsfiberdirectionsderiveddiffusionfiniteelement-basedtransversely-isotropicnonlinearinversionTI-NLIalgorithmMapsgeneratedanimalspecifictimesmapsshowlargelydisappearexceptiontensileOverallbecomesmechanicallyfindingsemphasizeStatementSignificance:combinedestimatefirsttimelivingdeathSignificantobservedbehaviorresultsdemonstratemeasuringwellprovidenewquantitativedatadevelopmentbiomechanicsporcineassessedMRAnisotropystiffnessDiffusionMagnetic

Similar Articles

Cited By

No available data.