PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications.
Miguel A Ortega, Diego Liviu Boaru, Diego De Leon-Oliva, Oscar Fraile-Martinez, Cielo García-Montero, Laura Rios, Maria J Garrido-Gil, Silvestra Barrena-Blázquez, Ana M Minaya-Bravo, Antonio Rios-Parra, Melchor Álvarez-Mon, Laura Jiménez-Álvarez, Laura López-González, Luis G Guijarro, Raul Diaz, Miguel A Saez
Author Information
Miguel A Ortega: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain. miguelangel.ortega@uah.es. ORCID
Diego Liviu Boaru: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Diego De Leon-Oliva: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Oscar Fraile-Martinez: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Cielo García-Montero: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Laura Rios: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Maria J Garrido-Gil: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Silvestra Barrena-Blázquez: Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
Ana M Minaya-Bravo: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Antonio Rios-Parra: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Melchor Álvarez-Mon: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Laura Jiménez-Álvarez: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Laura López-González: Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
Luis G Guijarro: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
Raul Diaz: Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain. raul.diazp@uah.es.
Miguel A Saez: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/J.CELL.2011.02.013
[DOI: 10.1016/J.CELL.2011.02.013]
Ljunggren HG, Jonsson R, Höglund P (2018) Seminal immunologic discoveries with direct clinical implications: the 2018 Nobel Prize in Physiology or Medicine honours discoveries in cancer immunotherapy. Scand J Immunol. https://doi.org/10.1111/SJI.12731
[DOI: 10.1111/SJI.12731]
Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer–immune set point. Nature 541(7637):321–330. https://doi.org/10.1038/nature21349
[DOI: 10.1038/nature21349]
Ghosh C, Luong G, Sun Y (2021) A snapshot of the PD-1/PD-L1 pathway. J Cancer 12:2735. https://doi.org/10.7150/JCA.57334
[DOI: 10.7150/JCA.57334]
Jiang X, Wang J, Deng X et al (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18:1–17. https://doi.org/10.1186/S12943-018-0928-4
[DOI: 10.1186/S12943-018-0928-4]
Song MK, Park BB, Uhm J (2019) Understanding immune evasion and therapeutic targeting associated with PD-1/PD-L1 pathway in diffuse large B-cell lymphoma. Int J Mol Sci 20:1326. https://doi.org/10.3390/IJMS20061326
[DOI: 10.3390/IJMS20061326]
Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27:1492–1504. https://doi.org/10.1093/ANNONC/MDW217
[DOI: 10.1093/ANNONC/MDW217]
Silveira DA, Ribeiro FM, Simão ÉM et al (2021) Expression of genes and pathways associated with the B7-CD28 superfamily in response to irradiation of blood cells using 137Cs. Int J Radiat Biol 97:149–155. https://doi.org/10.1080/09553002.2021.1857454
[DOI: 10.1080/09553002.2021.1857454]
Rezayi M, Hosseini A (2023) Structure of PD1 and its mechanism in the treatment of autoimmune diseases. Cell Biochem Funct 41:726–737. https://doi.org/10.1002/CBF.3827
[DOI: 10.1002/CBF.3827]
Lai X, Li R, Wang P et al (2023) Cumulative effects of weakly repressive regulatory regions in the 3’ UTR maintain PD-1 expression homeostasis in mammals. Commun Biol 6:1–13. https://doi.org/10.1038/s42003-023-04922-y
[DOI: 10.1038/s42003-023-04922-y]
Malinowska K, Kowalski A, Merecz-Sadowska A et al (2023) PD-1 and PD-L1 expression levels as a potential biomarker of chronic rhinosinusitis and head and neck cancers. J Clinl Med 12:2033. https://doi.org/10.3390/JCM12052033
[DOI: 10.3390/JCM12052033]
Chen R-Y, Zhu Y, Shen Y-Y et al (2023) The role of PD-1 signaling in health and immune-related diseases. https://doi.org/10.3389/fimmu.2023.1163633
Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39:98–106. https://doi.org/10.1097/COC.0000000000000239
[DOI: 10.1097/COC.0000000000000239]
Zhang Y, Zheng J (2020) Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol 1248:201–226. https://doi.org/10.1007/978-981-15-3266-5_9
[DOI: 10.1007/978-981-15-3266-5_9]
Zhang K, Kong X, Li Y et al (2022) PD-1/PD-L1 inhibitors in patients with preexisting autoimmune diseases. Front Pharmacol. https://doi.org/10.3389/FPHAR.2022.854967
[DOI: 10.3389/FPHAR.2022.854967]
Chen RY, Zhu Y, Shen YY et al (2023) The role of PD-1 signaling in health and immune-related diseases. Front Immunol 14:1163633. https://doi.org/10.3389/FIMMU.2023.1163633/BIBTEX
[DOI: 10.3389/FIMMU.2023.1163633/BIBTEX]
Boussiotis VA, Chatterjee P, Li L (2014) Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J 20:265–271. https://doi.org/10.1097/PPO.0000000000000059
[DOI: 10.1097/PPO.0000000000000059]
Patsoukis N, Duke-Cohan JS, Chaudhri A et al (2020) Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. https://doi.org/10.1038/S42003-020-0845-0
[DOI: 10.1038/S42003-020-0845-0]
Shimizu K, Sugiura D, Okazaki IM et al (2021) PD-1 preferentially inhibits the activation of low-affinity T cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/PNAS.2107141118
[DOI: 10.1073/PNAS.2107141118]
Marabelle A, Aspeslagh S, Postel-Vinay S, Soria JC (2017) JAK mutations as escape mechanisms to anti-PD-1 therapy. Cancer Discov 7:128–130. https://doi.org/10.1158/2159-8290.CD-16-1439
[DOI: 10.1158/2159-8290.CD-16-1439]
Niogret C, Birchmeier W, Guarda G (2019) SHP-2 in lymphocytes’ cytokine and inhibitory receptor signaling. Front Immunol. https://doi.org/10.3389/FIMMU.2019.02468
[DOI: 10.3389/FIMMU.2019.02468]
Ando S, Perkins CM, Sajiki Y et al (2023) mTOR regulates T cell exhaustion and PD-1-targeted immunotherapy response during chronic viral infection. J Clin Invest. https://doi.org/10.1172/JCI160025
[DOI: 10.1172/JCI160025]
Simon S, Labarriere N (2018) PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology. https://doi.org/10.1080/2162402X.2017.1364828
[DOI: 10.1080/2162402X.2017.1364828]
Thibult ML, Mamessier E, Gertner-Dardenne J et al (2013) PD-1 is a novel regulator of human B-cell activation. Int Immunol 25:129–137. https://doi.org/10.1093/INTIMM/DXS098
[DOI: 10.1093/INTIMM/DXS098]
Quatrini L, Mariotti FR, Munari E et al (2020) The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers (Basel) 12:1–21. https://doi.org/10.3390/CANCERS12113285
[DOI: 10.3390/CANCERS12113285]
Zhang H, Liu L, Liu J et al (2023) Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 22:58. https://doi.org/10.1186/S12943-023-01725-X
[DOI: 10.1186/S12943-023-01725-X]
Oh SA, Wu DC, Cheung J et al (2020) PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat Cancer 1:681–691. https://doi.org/10.1038/S43018-020-0075-X
[DOI: 10.1038/S43018-020-0075-X]
Strauss L, Mahmoud MAA, Weaver JD et al (2020) Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol. https://doi.org/10.1126/SCIIMMUNOL.AAY1863
[DOI: 10.1126/SCIIMMUNOL.AAY1863]
Sandhu HS, Hemmati HD, Dana R (2020) Immune checkpoint inhibitors and corneal transplant rejection: a call for awareness. Immunotherapy 12:947. https://doi.org/10.2217/IMT-2020-0100
[DOI: 10.2217/IMT-2020-0100]
Oliveira AF, Bretes L, Furtado I (2019) Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol. https://doi.org/10.3389/FONC.2019.00396
[DOI: 10.3389/FONC.2019.00396]
Youngblood B, Oestreich KJ, Ha SJ et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412. https://doi.org/10.1016/J.IMMUNI.2011.06.015
[DOI: 10.1016/J.IMMUNI.2011.06.015]
Wei H, Xie A, Li J et al (2022) PD-1+ CD4 T cell immune response is mediated by HIF-1α/NFATc1 pathway after P. yoelii infection. Front Immunol 13:942862. https://doi.org/10.3389/FIMMU.2022.942862/BIBTEX
[DOI: 10.3389/FIMMU.2022.942862/BIBTEX]
Bally APR, Austin JW, Boss JM (2016) Genetic and epigenetic regulation of PD-1 expression. J Immunol 196:2431. https://doi.org/10.4049/JIMMUNOL.1502643
[DOI: 10.4049/JIMMUNOL.1502643]
Roper N, Velez MJ, Chiappori A et al (2021) Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer. Nat Commun. https://doi.org/10.1038/S41467-021-24164-Y
[DOI: 10.1038/S41467-021-24164-Y]
Morimoto Y, Kishida T, Ichiro KS et al (2018) Interferon-β signal may up-regulate PD-L1 expression through IRF9-dependent and independent pathways in lung cancer cells. Biochem Biophys Res Commun 507:330–336. https://doi.org/10.1016/J.BBRC.2018.11.035
[DOI: 10.1016/J.BBRC.2018.11.035]
Wei F, Zhong S, Ma Z et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A. https://doi.org/10.1073/PNAS.1305394110/-/DCSUPPLEMENTAL/SM04.AVI
[DOI: 10.1073/PNAS.1305394110/-/DCSUPPLEMENTAL/SM04.AVI]
Hashimoto M, Araki K, Cardenas MA et al (2022) PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610(7930):173–181. https://doi.org/10.1038/s41586-022-05257-0
[DOI: 10.1038/s41586-022-05257-0]
Christofides A, Katopodi XL, Cao C et al (2023) SHP-2 and PD-1-SHP-2 signaling regulate myeloid cell differentiation and antitumor responses. Nat Immunol 24:55–68. https://doi.org/10.1038/S41590-022-01385-X
[DOI: 10.1038/S41590-022-01385-X]
Qi T, Fu J, Zhang W et al (2020) Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Transl Cancer Res 9:6811. https://doi.org/10.21037/TCR-20-2118
[DOI: 10.21037/TCR-20-2118]
Mizuno R, Sugiura D, Shimizu K et al (2019) PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front Immunol. https://doi.org/10.3389/FIMMU.2019.00630
[DOI: 10.3389/FIMMU.2019.00630]
Zhang Q, Qi T, Long Y et al (2022) GATA3 predicts the tumor microenvironment phenotypes and molecular subtypes for bladder carcinoma. Front Surg 9:860663. https://doi.org/10.3389/FSURG.2022.860663/FULL
[DOI: 10.3389/FSURG.2022.860663/FULL]
Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219. https://doi.org/10.1111/J.1600-065X.2010.00923.X
[DOI: 10.1111/J.1600-065X.2010.00923.X]
Jackson JT, Mulazzani E, Nutt SL, Masters SL (2021) The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem. https://doi.org/10.1016/J.JBC.2021.100905
[DOI: 10.1016/J.JBC.2021.100905]
Pan X, Li R, Guo H et al (2021) Dihydropyridine calcium channel blockers suppress the transcription of PD-L1 by inhibiting the activation of STAT1. Front Pharmacol. https://doi.org/10.3389/FPHAR.2020.539261/FULL
[DOI: 10.3389/FPHAR.2020.539261/FULL]
Bardhan K, Anagnostou T, Boussiotis VA (2016) The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 7:550. https://doi.org/10.3389/FIMMU.2016.00550
[DOI: 10.3389/FIMMU.2016.00550]
Salmaninejad A, Khoramshahi V, Azani A et al (2018) PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 70:73–86. https://doi.org/10.1007/S00251-017-1015-5
[DOI: 10.1007/S00251-017-1015-5]
Fabrizio FP, Trombetta D, Rossi A et al (2018) Gene code CD274/PD-L1: from molecular basis toward cancer immunotherapy. Ther Adv Med Oncol. https://doi.org/10.1177/1758835918815598
[DOI: 10.1177/1758835918815598]
Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778. https://doi.org/10.1056/NEJMRA1514296
[DOI: 10.1056/NEJMRA1514296]
Pascolutti R, Sun X, Kao J, et al Structure and dynamics of PD-L1 and an ultra high-affinity PD-1 receptor mutant. https://doi.org/10.1016/j.str.2016.06.026
Hou J, Zhao R, Xia W et al (2020) PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 22:1264–1275. https://doi.org/10.1038/S41556-020-0575-Z
[DOI: 10.1038/S41556-020-0575-Z]
Gao Y, Nihira NT, Bu X et al (2020) Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol 22:1064–1075. https://doi.org/10.1038/S41556-020-0562-4
[DOI: 10.1038/S41556-020-0562-4]
Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27:409–416. https://doi.org/10.1093/ANNONC/MDV615
[DOI: 10.1093/ANNONC/MDV615]
Zak KM, Grudnik P, Magiera K et al (2017) Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 25:1163–1174. https://doi.org/10.1016/J.STR.2017.06.011
[DOI: 10.1016/J.STR.2017.06.011]
Yan L, Sun Y, Guo J, Jia R (2023) PD-L1 exon 3 is a hidden switch of its expression and function in oral cancer cells. Int J Mol Sci. https://doi.org/10.3390/IJMS24098193/S1
[DOI: 10.3390/IJMS24098193/S1]
Lemma EY, Letian A, Altorki NK, McGraw TE (2023) Regulation of PD-L1 trafficking from synthesis to degradation. Cancer Immunol Res 11:866. https://doi.org/10.1158/2326-6066.CIR-22-0953
[DOI: 10.1158/2326-6066.CIR-22-0953]
Mahoney KM, Shukla SA, Patsoukis N et al (2019) A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol Immunother 68:421. https://doi.org/10.1007/S00262-018-2282-1
[DOI: 10.1007/S00262-018-2282-1]
Wang C, Weng M, Xia S et al (2021) Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci 112:178–193. https://doi.org/10.1111/CAS.14690
[DOI: 10.1111/CAS.14690]
Kornepati AVR, Vadlamudi RK, Curiel TJ (2022) Programmed death ligand 1 signals in cancer cells HHS Public Access. Nat Rev Cancer 22:174–189. https://doi.org/10.1038/s41568-021-00431-4
[DOI: 10.1038/s41568-021-00431-4]
Zahm CD, Colluru VT, McIlwain SJ et al (2018) TLR stimulation during T-cell activation lowers PD-1 expression on CD8+ T cells. Cancer Immunol Res 6:1364. https://doi.org/10.1158/2326-6066.CIR-18-0243
[DOI: 10.1158/2326-6066.CIR-18-0243]
Zhang S, You X, Xu T et al (2022) PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation inhibitor promotes cancer-associated immunosuppression. Cell Death Dis 13(10):1–13. https://doi.org/10.1038/s41419-022-05292-9
[DOI: 10.1038/s41419-022-05292-9]
Kythreotou A, Siddique A, Mauri FA et al (2018) PD-L1. J Clin Pathol 71:189–194. https://doi.org/10.1136/JCLINPATH-2017-204853
[DOI: 10.1136/JCLINPATH-2017-204853]
Ritprajak P, Azuma M (2015) Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 51:221–228. https://doi.org/10.1016/J.ORALONCOLOGY.2014.11.014
[DOI: 10.1016/J.ORALONCOLOGY.2014.11.014]
Doi T, Ishikawa T, Okayama T et al (2017) The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 37:1545–1554. https://doi.org/10.3892/OR.2017.5399
[DOI: 10.3892/OR.2017.5399]
Garcia-Diaz A, Shin DS, Moreno BH et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201. https://doi.org/10.1016/J.CELREP.2017.04.031
[DOI: 10.1016/J.CELREP.2017.04.031]
Lastwika KJ, Wilson W, Li QK et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 76:227–238. https://doi.org/10.1158/0008-5472.CAN-14-3362
[DOI: 10.1158/0008-5472.CAN-14-3362]
Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. https://doi.org/10.1016/J.CCELL.2015.03.001
[DOI: 10.1016/J.CCELL.2015.03.001]
Chen M, Pockaj B, Andreozzi M et al (2018) JAK2 and PD-L1 amplification enhance the dynamic expression of PD-L1 in triple-negative breast cancer. Clin Breast Cancer 18:e1205–e1215. https://doi.org/10.1016/J.CLBC.2018.05.006
[DOI: 10.1016/J.CLBC.2018.05.006]
Wu X, Xue R, Peng H et al (2019) Traf6 inhibitor boosts antitumor immunity by impeding regulatory T cell migration in Hepa1–6 tumor model. Int Immunopharmacol. https://doi.org/10.1016/J.INTIMP.2019.105965
[DOI: 10.1016/J.INTIMP.2019.105965]
Tartey S, Neale G, Vogel P et al (2021) A MyD88/IL1R axis regulates PD-1 expression on tumor-associated macrophages and sustains their immunosuppressive function in melanoma. Cancer Res 81:2358–2372. https://doi.org/10.1158/0008-5472.CAN-20-3510
[DOI: 10.1158/0008-5472.CAN-20-3510]
Dong P, Xiong Y, Yue J et al (2018) Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. https://doi.org/10.3389/FONC.2018.00386
[DOI: 10.3389/FONC.2018.00386]
Nunes-Xavier CE, Angulo JC, Pulido R, López JI (2019) A critical insight into the clinical translation of PD-1/PD-L1 blockade therapy in clear cell renal cell carcinoma. Curr Urol Rep. https://doi.org/10.1007/S11934-019-0866-8
[DOI: 10.1007/S11934-019-0866-8]
Sun Z, Fourcade J, Pagliano O et al (2015) IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Res 75:1635–1644. https://doi.org/10.1158/0008-5472.CAN-14-3016
[DOI: 10.1158/0008-5472.CAN-14-3016]
Qin W, Hu L, Zhang X et al (2019) The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol 10:471436. https://doi.org/10.3389/FIMMU.2019.02298/BIBTEX
[DOI: 10.3389/FIMMU.2019.02298/BIBTEX]
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/NRC3239
[DOI: 10.1038/NRC3239]
Huang CY, Wang Y, Luo GY et al (2017) Relationship between PD-L1 expression and CD8+ T-cell immune responses in hepatocellular carcinoma. J Immunother 40:323–333. https://doi.org/10.1097/CJI.0000000000000187
[DOI: 10.1097/CJI.0000000000000187]
Alsaab HO, Sau S, Alzhrani R et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:273409. https://doi.org/10.3389/FPHAR.2017.00561/BIBTEX
[DOI: 10.3389/FPHAR.2017.00561/BIBTEX]
Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10:727
[PMID: 32266087]
Sharma VR, Gupta GK, Sharma AK et al (2017) PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation. Curr Pharm Des 23:1633–1638. https://doi.org/10.2174/1381612823666161116125218
[DOI: 10.2174/1381612823666161116125218]
O’Donnell JS, Massi D, Teng MWL, Mandala M (2018) PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48:91–103. https://doi.org/10.1016/J.SEMCANCER.2017.04.015
[DOI: 10.1016/J.SEMCANCER.2017.04.015]
Zhao R, Song Y, Wang Y et al (2019) PD-1/PD-L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway. Cell Prolif. https://doi.org/10.1111/CPR.12571
[DOI: 10.1111/CPR.12571]
Wei F, Zhang T, Deng SC et al (2019) PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 450:1–13. https://doi.org/10.1016/J.CANLET.2019.02.022
[DOI: 10.1016/J.CANLET.2019.02.022]
Peng Q, Deng Z, Pan H et al (2018) Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol Lett 15:1379–1388. https://doi.org/10.3892/OL.2017.7491
[DOI: 10.3892/OL.2017.7491]
Shen X, Jin X, Fang S, Chen J (2023) EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett. https://doi.org/10.1186/S11658-023-00471-8
[DOI: 10.1186/S11658-023-00471-8]
Dang W, Xiao J, Ma Q et al (2021) Combination of p38 MAPK inhibitor with PD-L1 antibody effectively prolongs survivals of temozolomide-resistant glioma-bearing mice via reduction of infiltrating glioma-associated macrophages and PD-L1 expression on resident glioma-associated microglia. Brain Tumor Pathol 38:189–200. https://doi.org/10.1007/S10014-021-00404-3
[DOI: 10.1007/S10014-021-00404-3]
Luo M, Xia Y, Wang F et al (2021) PD0325901, an ERK inhibitor, enhances the efficacy of PD-1 inhibitor in non-small cell lung carcinoma. Acta Pharm Sin B 11:3120–3133. https://doi.org/10.1016/J.APSB.2021.03.010
[DOI: 10.1016/J.APSB.2021.03.010]
Stutvoet TS, Kol A, de Vries EGE et al (2019) MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J Pathol 249:52–64. https://doi.org/10.1002/PATH.5280
[DOI: 10.1002/PATH.5280]
Jalali S, Price-Troska T, Bothun C et al (2019) Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer J. https://doi.org/10.1038/S41408-019-0185-9
[DOI: 10.1038/S41408-019-0185-9]
Loi S, Dushyanthen S, Beavis PA et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22:1499–1509. https://doi.org/10.1158/1078-0432.CCR-15-1125
[DOI: 10.1158/1078-0432.CCR-15-1125]
Banerjee S, Biehl A, Gadina M et al (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77:521–546. https://doi.org/10.1007/S40265-017-0701-9
[DOI: 10.1007/S40265-017-0701-9]
Li G, Choi JE, Kryczek I et al (2023) Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. Cancer Cell 41:304-322.e7. https://doi.org/10.1016/J.CCELL.2022.12.008
[DOI: 10.1016/J.CCELL.2022.12.008]
Li P, Huang T, Zou Q et al (2019) FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol 202:3065–3075. https://doi.org/10.4049/JIMMUNOL.1801199
[DOI: 10.4049/JIMMUNOL.1801199]
Harb J, Lin PJ, Hao J (2019) Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep. https://doi.org/10.1007/S11912-019-0763-9
[DOI: 10.1007/S11912-019-0763-9]
Castagnoli L, Cancila V, Cordoba-Romero SL et al (2019) WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 38:4047–4060. https://doi.org/10.1038/S41388-019-0700-2
[DOI: 10.1038/S41388-019-0700-2]
Taylor A, Rothstein D, Rudd CE (2018) Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res 78:706–717. https://doi.org/10.1158/0008-5472.CAN-17-0491
[DOI: 10.1158/0008-5472.CAN-17-0491]
Lim W, Jeong M, Bazer FW, Song G (2016) Curcumin suppresses proliferation and migration and induces apoptosis on human placental choriocarcinoma cells via ERK1/2 and SAPK/JNK MAPK signaling pathways. Biol Reprod. https://doi.org/10.1095/BIOLREPROD.116.141630
[DOI: 10.1095/BIOLREPROD.116.141630]
Betzler AC, Theodoraki MN, Schuler PJ et al (2020) NF-κB and its role in checkpoint control. Int J Molr Sci 21:3949. https://doi.org/10.3390/IJMS21113949
[DOI: 10.3390/IJMS21113949]
Bi XW, Wang H, Zhang WW et al (2016) PD-L1 is upregulated by EBV-driven LMP1 through NF-κB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol. https://doi.org/10.1186/S13045-016-0341-7
[DOI: 10.1186/S13045-016-0341-7]
Wu F, Zhang Y, Sun B et al (2017) Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol 24:252–280. https://doi.org/10.1016/J.CHEMBIOL.2017.02.010
[DOI: 10.1016/J.CHEMBIOL.2017.02.010]
Chakrabarti J, Holokai L, Syu LJ et al (2018) Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9:37439–37457. https://doi.org/10.18632/ONCOTARGET.26473
[DOI: 10.18632/ONCOTARGET.26473]
Petty AJ, Dai R, Lapalombella R et al (2021) Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight. https://doi.org/10.1172/JCI.INSIGHT.146707
[DOI: 10.1172/JCI.INSIGHT.146707]
Antonangeli F, Natalini A, Garassino MC et al (2020) Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol. https://doi.org/10.3389/FIMMU.2020.584626
[DOI: 10.3389/FIMMU.2020.584626]
Antonangeli F, Natalini A, Garassino MC et al (2020) Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol 11:584626. https://doi.org/10.3389/FIMMU.2020.584626
[DOI: 10.3389/FIMMU.2020.584626]
Parvez A, Choudhary F, Mudgal P et al (2023) PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol. https://doi.org/10.3389/FIMMU.2023.1296341
[DOI: 10.3389/FIMMU.2023.1296341]
Berghmans T, Durieux V, Hendriks LEL, Dingemans A-M (2020) Immunotherapy: from advanced NSCLC to early stages, an evolving concept. Front Med (Lausanne) 7:505416. https://doi.org/10.3389/FMED.2020.00090
[DOI: 10.3389/FMED.2020.00090]
Jia M, Feng W, Kang S et al (2015) Evaluation of the efficacy and safety of anti-PD-1 and anti-PD-L1 antibody in the treatment of non-small cell lung cancer (NSCLC): a meta-analysis. J Thorac Dis 7:455. https://doi.org/10.3978/J.ISSN.2072-1439.2015.02.06
[DOI: 10.3978/J.ISSN.2072-1439.2015.02.06]
Li H, van der Merwe PA, Sivakumar S (2022) Biomarkers of response to PD-1 pathway blockade. Br J Cancer 126(12):1663–1675. https://doi.org/10.1038/s41416-022-01743-4
[DOI: 10.1038/s41416-022-01743-4]
Khunger M, Hernandez A V., Pasupuleti V et al (2017) Programmed cell death 1 (PD-1) ligand (PD-L1) expression in solid tumors as a predictive biomarker of benefit from PD-1/PD-L1 axis inhibitors: a systematic review and meta-analysis. JCO Precis Oncol 1–15. https://doi.org/10.1200/PO.16.00030/ASSET/IMAGES/LARGE/PO.16.00030APP2.JPEG
Zhang M, Liu J, Xia Q (2023) Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp Hematol Oncol 12:1–30. https://doi.org/10.1186/S40164-023-00442-X/FIGURES/4
[DOI: 10.1186/S40164-023-00442-X/FIGURES/4]
Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218. https://doi.org/10.1038/S41573-018-0007-Y
[DOI: 10.1038/S41573-018-0007-Y]
Wang L, Geng H, Liu Y et al (2023) Hot and cold tumors: immunological features and the therapeutic strategies. MedComm (Beijing). https://doi.org/10.1002/MCO2.343
[DOI: 10.1002/MCO2.343]
Ricciuti B, Wang X, Alessi JV et al (2022) Association of high tumor mutation burden in non–small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol 8:1160–1168. https://doi.org/10.1001/JAMAONCOL.2022.1981
[DOI: 10.1001/JAMAONCOL.2022.1981]
Veen T, Kanani A, Lea D, Søreide K (2023) Clinical trials of neoadjuvant immune checkpoint inhibitors for early-stage operable colon and rectal cancer. Cancer Immunol Immunother 72:3135–3147. https://doi.org/10.1007/S00262-023-03480-W/FIGURES/2
[DOI: 10.1007/S00262-023-03480-W/FIGURES/2]
Ilie M, Khambata-Ford S, Copie-Bergman C et al (2017) Use of the 22C3 anti–PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms. PLoS ONE 12:e0183023. https://doi.org/10.1371/JOURNAL.PONE.0183023
[DOI: 10.1371/JOURNAL.PONE.0183023]
Maule JG, Clinton LK, Graf RP et al (2022) Comparison of PD-L1 tumor cell expression with 22C3, 28–8, and SP142 IHC assays across multiple tumor types. J Immunother Cancer 10:e005573. https://doi.org/10.1136/JITC-2022-005573
[DOI: 10.1136/JITC-2022-005573]
Lu S, Stein JE, Rimm DL et al (2019) Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol 5:1195. https://doi.org/10.1001/JAMAONCOL.2019.1549
[DOI: 10.1001/JAMAONCOL.2019.1549]
Vranic S, Gatalica Z (2023) PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol Biomed 23:15. https://doi.org/10.17305/BJBMS.2022.7953
[DOI: 10.17305/BJBMS.2022.7953]
Lea D, Zaharia C, Søreide K (2024) Programmed death ligand-1 (PD-L1) clone 22C3 expression in resected colorectal cancer as companion diagnostics for immune checkpoint inhibitor therapy: a comparison study and inter-rater agreement evaluation across proposed cut-offs and predictive (TPS, CPS and IC) scores. Cancer Treat Res Commun. https://doi.org/10.1016/J.CTARC.2023.100788
[DOI: 10.1016/J.CTARC.2023.100788]
Paver EC, Cooper WA, Colebatch AJ et al (2021) Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology 53:141–156. https://doi.org/10.1016/J.PATHOL.2020.10.007
[DOI: 10.1016/J.PATHOL.2020.10.007]
Kluger HM, Zito CR, Turcu G et al (2017) PD-L1 studies across tumor types, its differential expression and predictive value in patients treated with immune checkpoint inhibitors. Clin Cancer Res 23:4270. https://doi.org/10.1158/1078-0432.CCR-16-3146
[DOI: 10.1158/1078-0432.CCR-16-3146]
Davis AA, Patel VG (2019) The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer 7:278. https://doi.org/10.1186/S40425-019-0768-9
[DOI: 10.1186/S40425-019-0768-9]
Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. https://doi.org/10.1126/SCITRANSLMED.AAD7118
[DOI: 10.1126/SCITRANSLMED.AAD7118]
Cottrell TR, Taube JM (2018) PD-L1 and emerging biomarkers in immune checkpoint blockade therapy. Cancer J (United States) 24:41–46. https://doi.org/10.1097/PPO.0000000000000301
[DOI: 10.1097/PPO.0000000000000301]
Xu Y, Wan B, Chen X et al (2019) The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl Lung Cancer Res 8:413. https://doi.org/10.21037/TLCR.2019.08.09
[DOI: 10.21037/TLCR.2019.08.09]
Ding W, LaPlant BR, Call TG et al (2017) Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 129:3419–3427. https://doi.org/10.1182/BLOOD-2017-02-765685
[DOI: 10.1182/BLOOD-2017-02-765685]
Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 375:1823–1833. https://doi.org/10.1056/NEJMOA1606774/SUPPL_FILE/NEJMOA1606774_DISCLOSURES.PDF
[DOI: 10.1056/NEJMOA1606774/SUPPL_FILE/NEJMOA1606774_DISCLOSURES.PDF]
Prince EA, Sanzari JK, Pandya D et al (2021) Analytical concordance of PD-L1 assays utilizing antibodies from FDA-approved diagnostics in advanced cancers: a systematic literature review. JCO Precis Oncol 5:953–973. https://doi.org/10.1200/PO.20.00412
[DOI: 10.1200/PO.20.00412]
Pang C, Yin L, Zhou X et al (2018) Assessment of programmed cell death ligand-1 expression with multiple immunohistochemistry antibody clones in non-small cell lung cancer. J Thorac Dis 10:816–824. https://doi.org/10.21037/JTD.2018.01.124
[DOI: 10.21037/JTD.2018.01.124]
Doroshow DB, Bhalla S, Beasley MB et al (2021) PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 18(6):345–362. https://doi.org/10.1038/s41571-021-00473-5
[DOI: 10.1038/s41571-021-00473-5]
Yue C, Jiang Y, Li P et al (2018) Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. Oncoimmunology. https://doi.org/10.1080/2162402X.2018.1438111
[DOI: 10.1080/2162402X.2018.1438111]
Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. https://doi.org/10.1038/nature14011
[DOI: 10.1038/nature14011]
Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMOA1412082
[DOI: 10.1056/NEJMOA1412082]
Yu H, Batenchuk C, Badzio A et al (2017) PD-L1 expression by two complementary diagnostic assays and mRNA in situ hybridization in small cell lung cancer. J Thorac Oncol 12:110–120. https://doi.org/10.1016/j.jtho.2016.09.002
[DOI: 10.1016/j.jtho.2016.09.002]
Qi Y, Yan X, Wang C et al (2022) Predictive value of PD-L1 expression to the efficacy of immune checkpoint inhibitors in advanced triple-negative breast cancer: a systematic review and meta-analysis. Front Pharmacol 13:1004821. https://doi.org/10.3389/FPHAR.2022.1004821/BIBTEX
[DOI: 10.3389/FPHAR.2022.1004821/BIBTEX]
Zhou J, Mahoney KM, Giobbie-Hurder A et al (2017) Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol Res 5:480–492. https://doi.org/10.1158/2326-6066.CIR-16-0329
[DOI: 10.1158/2326-6066.CIR-16-0329]
Kruger S, Legenstein ML, Rösgen V et al (2017) Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology. https://doi.org/10.1080/2162402X.2017.1310358
[DOI: 10.1080/2162402X.2017.1310358]
Chivu-Economescu M, Herlea V, Dima S et al (2023) Soluble PD-L1 as a diagnostic and prognostic biomarker in resectable gastric cancer patients. Gastric Cancer 26:934–946. https://doi.org/10.1007/S10120-023-01429-7/TABLES/3
[DOI: 10.1007/S10120-023-01429-7/TABLES/3]
Nagato T, Ohkuri T, Ohara K et al (2017) Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol Immunother 66:877–890. https://doi.org/10.1007/S00262-017-1987-X
[DOI: 10.1007/S00262-017-1987-X]
Hoos A (2016) Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15:235–247. https://doi.org/10.1038/NRD.2015.35
[DOI: 10.1038/NRD.2015.35]
Topp BG, Channavazzala M, Mayawala K et al (2023) Tumor dynamics in patients with solid tumors treated with pembrolizumab beyond disease progression. https://doi.org/10.1016/j.ccell.2023.08.004
Ross-Macdonald P, Walsh AM, Chasalow SD et al (2021) Molecular correlates of response to nivolumab at baseline and on treatment in patients with RCC. J Immunother Cancer. https://doi.org/10.1136/JITC-2020-001506
[DOI: 10.1136/JITC-2020-001506]
Baggi A, Quaglino P, Rubatto M et al (2021) Real world data of cemiplimab in locally advanced and metastatic cutaneous squamous cell carcinoma. Eur J Cancer 157:250–258. https://doi.org/10.1016/J.EJCA.2021.08.018
[DOI: 10.1016/J.EJCA.2021.08.018]
Friedman CF, Hainsworth JD, Kurzrock R et al (2022) Atezolizumab treatment of tumors with high tumor mutational burden from MyPathway, a multicenter, open-label, phase IIa multiple basket study. Cancer Discov 12:654. https://doi.org/10.1158/2159-8290.CD-21-0450
[DOI: 10.1158/2159-8290.CD-21-0450]
Zhao B, Gao M, Zhao H et al (2021) Efficacy and safety profile of avelumab monotherapy. Crit Rev Oncol Hematol 166:103464. https://doi.org/10.1016/J.CRITREVONC.2021.103464
[DOI: 10.1016/J.CRITREVONC.2021.103464]
Paz-Ares L, Spira A, Raben D et al (2020) Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann Oncol 31:798–806. https://doi.org/10.1016/j.annonc.2020.03.287
[DOI: 10.1016/j.annonc.2020.03.287]
Wang FH, Wei XL, Feng J et al (2021) Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: a phase II clinical trial (POLARIS-02). J Clin Oncol 39:704. https://doi.org/10.1200/JCO.20.02712
[DOI: 10.1200/JCO.20.02712]
Liu X, Yi Y (2020) Recent updates on sintilimab in solid tumor immunotherapy. Biomark Res 8:1–9. https://doi.org/10.1186/S40364-020-00250-Z/TABLES/3
[DOI: 10.1186/S40364-020-00250-Z/TABLES/3]
Chen J, Hu X, Li Q et al (2020) Effectiveness and safety of toripalimab, camrelizumab, and sintilimab in a real-world cohort of hepatitis B virus associated hepatocellular carcinoma patients. Ann Transl Med 8:1187–1187. https://doi.org/10.21037/ATM-20-6063
[DOI: 10.21037/ATM-20-6063]
Yang Y, Pan J, Wang H et al (2023) Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: a multicenter phase 3 trial (RATIONALE-309). Cancer Cell 41:1061–1072.e4. https://doi.org/10.1016/j.ccell.2023.04.014
[DOI: 10.1016/j.ccell.2023.04.014]
Xia L, Wang J, Wang C et al (2023) Efficacy and safety of zimberelimab (GLS-010) monotherapy in patients with recurrent or metastatic cervical cancer: a multicenter, single-arm, phase II study. Int J Gynecol Cancer 33:1861–1868. https://doi.org/10.1136/IJGC-2023-004705
[DOI: 10.1136/IJGC-2023-004705]
Tjulandin S, Demidov L, Moiseyenko V et al (2021) Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer 149:222–232. https://doi.org/10.1016/J.EJCA.2021.02.030
[DOI: 10.1016/J.EJCA.2021.02.030]
Wang D, Lin J, Yang X et al (2019) Combination regimens with PD-1/PD-L1 immune checkpoint inhibitors for gastrointestinal malignancies. J Hematol Oncol. https://doi.org/10.1186/S13045-019-0730-9
[DOI: 10.1186/S13045-019-0730-9]
Gotwals P, Cameron S, Cipolletta D et al (2017) Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 17:286–301. https://doi.org/10.1038/NRC.2017.17
[DOI: 10.1038/NRC.2017.17]
Mangla A, Lee C, Mirsky MM et al (2024) Neoadjuvant dual checkpoint inhibitors vs anti-PD1 therapy in high-risk resectable melanoma: a pooled analysis. JAMA Oncol 10:612. https://doi.org/10.1001/JAMAONCOL.2023.7333
[DOI: 10.1001/JAMAONCOL.2023.7333]
Kanani A, Veen T, Søreide K (2021) Neoadjuvant immunotherapy in primary and metastatic colorectal cancer. Br J Surg 108:1417–1425. https://doi.org/10.1093/BJS/ZNAB342
[DOI: 10.1093/BJS/ZNAB342]
Shitara K, Rha SY, Wyrwicz LS et al (2024) Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol 25:212–224. https://doi.org/10.1016/S1470-2045(23)00541-7
[DOI: 10.1016/S1470-2045(23)00541-7]
Das S, Johnson DB (2019) Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer 7:306. https://doi.org/10.1186/S40425-019-0805-8
[DOI: 10.1186/S40425-019-0805-8]
Hegde PS, Chen DS (2020) Top 10 challenges in cancer immunotherapy. Immunity 52:17–35. https://doi.org/10.1016/J.IMMUNI.2019.12.011
[DOI: 10.1016/J.IMMUNI.2019.12.011]
Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168. https://doi.org/10.1056/NEJMRA1703481
[DOI: 10.1056/NEJMRA1703481]
Lee DJ, Lee HJ, Farmer JR, Reynolds KL (2021) Mechanisms driving immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Curr Cardiol Rep 23:1–12. https://doi.org/10.1007/S11886-021-01530-2/METRICS
[DOI: 10.1007/S11886-021-01530-2/METRICS]
Baxi S, Yang A, Gennarelli RL et al (2018) Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 360:793. https://doi.org/10.1136/BMJ.K793
[DOI: 10.1136/BMJ.K793]
Sonpavde GP, Grivas P, Lin Y et al (2021) Immune-related adverse events with PD-1 versus PD-L1 inhibitors: a meta-analysis of 8730 patients from clinical trials. Future Oncol 17:2545–2558. https://doi.org/10.2217/FON-2020-1222
[DOI: 10.2217/FON-2020-1222]
De Velasco G, Je Y, Bossé D et al (2017) Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol Res 5:312–318. https://doi.org/10.1158/2326-6066.CIR-16-0237/467210/AM/COMPREHENSIVE-META-ANALYSIS-OF-KEY-IMMUNE-RELATED
[DOI: 10.1158/2326-6066.CIR-16-0237/467210/AM/COMPREHENSIVE-META-ANALYSIS-OF-KEY-IMMUNE-RELATED]
Yin Q, Wu L, Han L et al (2023) Immune-related adverse events of immune checkpoint inhibitors: a review. Front Immunol 14:1167975. https://doi.org/10.3389/FIMMU.2023.1167975/BIBTEX
[DOI: 10.3389/FIMMU.2023.1167975/BIBTEX]
Moslehi JJ, Salem JE, Sosman JA et al (2018) Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. The Lancet 391:933. https://doi.org/10.1016/S0140-6736(18)30533-6
[DOI: 10.1016/S0140-6736(18)30533-6]
Tocchetti CG, Cadeddu C, Di Lisi D et al (2019) From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: a translational overview. Antioxid Redox Signal 30:2110–2153. https://doi.org/10.1089/ARS.2016.6930
[DOI: 10.1089/ARS.2016.6930]
Wang DY, Ye F, Zhao S, Johnson DB (2017) Incidence of immune checkpoint inhibitor-related colitis in solid tumor patients: a systematic review and meta-analysis. Oncoimmunology. https://doi.org/10.1080/2162402X.2017.1344805
[DOI: 10.1080/2162402X.2017.1344805]
Sun JY, Zhang D, Wu S et al (2020) Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res. https://doi.org/10.1186/S40364-020-00212-5
[DOI: 10.1186/S40364-020-00212-5]
Lee DY, Im E, Yoon D et al (2022) Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 86:1033–1057. https://doi.org/10.1016/J.SEMCANCER.2020.12.001
[DOI: 10.1016/J.SEMCANCER.2020.12.001]
Li JH, Huang LJ, Zhou HL et al (2022) Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacol Sin 43(11):2749–2758. https://doi.org/10.1038/s41401-022-00910-w
[DOI: 10.1038/s41401-022-00910-w]
Gao J, Wang WQ, Pei Q et al (2020) Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin 41(7):986–994. https://doi.org/10.1038/s41401-020-0400-z
[DOI: 10.1038/s41401-020-0400-z]
Zhou Y, Liu Z, Chen T (2022) Gut microbiota: a promising milestone in enhancing the efficacy of PD1/PD-L1 blockade therapy. Front Oncol 12:847350. https://doi.org/10.3389/FONC.2022.847350/BIBTEX
[DOI: 10.3389/FONC.2022.847350/BIBTEX]