Identification of the FSH-RH as the other gonadotropin-releasing hormone.

Shun Kenny Uehara, Yuji Nishiike, Kazuki Maeda, Tomomi Karigo, Shigehiro Kuraku, Kataaki Okubo, Shinji Kanda
Author Information
  1. Shun Kenny Uehara: Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan. ORCID
  2. Yuji Nishiike: Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. ORCID
  3. Kazuki Maeda: Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
  4. Tomomi Karigo: Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ORCID
  5. Shigehiro Kuraku: Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. ORCID
  6. Kataaki Okubo: Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. ORCID
  7. Shinji Kanda: Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan. shinji@aori.u-tokyo.ac.jp. ORCID

Abstract

In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.

References

  1. Int Rev Cytol. 2003;225:131-85 [PMID: 12696592]
  2. PLoS One. 2013 Oct 23;8(10):e76684 [PMID: 24194844]
  3. Annu Rev Neurosci. 1997;20:533-66 [PMID: 9056724]
  4. PLoS One. 2016 Jun 29;11(6):e0158141 [PMID: 27355207]
  5. Brain Res. 2010 Dec 10;1364:10-24 [PMID: 20920482]
  6. Annu Rev Anim Biosci. 2022 Feb 15;10:107-130 [PMID: 34788545]
  7. Gen Comp Endocrinol. 2010 Feb 1;165(3):390-411 [PMID: 19348807]
  8. Endocrinology. 2012 Jul;153(7):3394-404 [PMID: 22544888]
  9. Front Neurosci. 2018 May 03;12:302 [PMID: 29773976]
  10. Gen Comp Endocrinol. 2016 Dec 1;239:4-12 [PMID: 27255365]
  11. Adv Exp Med Biol. 2013;784:297-323 [PMID: 23550012]
  12. Elife. 2019 Aug 06;8: [PMID: 31383257]
  13. Mol Biol Evol. 2019 Mar 1;36(3):621-631 [PMID: 30517749]
  14. Acta Physiol (Oxf). 2008 May;193(1):3-15 [PMID: 18284378]
  15. Endocr J. 2023 Apr 28;70(4):343-358 [PMID: 36889690]
  16. Biol Open. 2014 Apr 11;3(5):362-71 [PMID: 24728957]
  17. Endocrinology. 2018 Jan 1;159(1):163-183 [PMID: 29053844]
  18. Front Neuroendocrinol. 2010 Jul;31(3):241-58 [PMID: 20546773]
  19. Nature. 1977 Sep 22;269(5626):338-40 [PMID: 198666]
  20. BMC Evol Biol. 2017 Jul 6;17(1):162 [PMID: 28683774]
  21. Int J Mol Sci. 2021 Jun 17;22(12): [PMID: 34204216]
  22. Biochem Biophys Res Commun. 1971 Jun 18;43(6):1334-9 [PMID: 4936338]
  23. J Neuroendocrinol. 2022 Apr;34(4):e13101 [PMID: 35132714]
  24. Gen Comp Endocrinol. 2020 Nov 1;298:113568 [PMID: 32710898]
  25. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3197-202 [PMID: 11248055]
  26. Gen Comp Endocrinol. 1986 Dec;64(3):446-55 [PMID: 3100386]
  27. Biochem Biophys Res Commun. 2000 Sep 16;276(1):298-303 [PMID: 11006121]
  28. PLoS One. 2013;8(1):e54482 [PMID: 23372734]
  29. Gene. 2012 Jan 15;492(1):212-9 [PMID: 22051778]
  30. Best Pract Res Clin Endocrinol Metab. 2004 Dec;18(4):569-86 [PMID: 15533776]
  31. J Neuroendocrinol. 2022 May;34(5):e13068 [PMID: 34931380]
  32. Biochem Biophys Res Commun. 1971 Jul 2;44(1):205-10 [PMID: 4940370]
  33. Gen Comp Endocrinol. 2011 Sep 1;173(2):253-8 [PMID: 21663743]
  34. Poult Sci. 2023 Jan;102(1):102273 [PMID: 36436379]
  35. Zoological Lett. 2019 Jul 22;5:23 [PMID: 31367467]
  36. Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R803-10 [PMID: 18160529]
  37. Gen Comp Endocrinol. 2001 Oct;124(1):45-52 [PMID: 11703070]
  38. Front Endocrinol (Lausanne). 2012 Apr 02;3:48 [PMID: 22649420]
  39. Gen Comp Endocrinol. 1990 Mar;77(3):348-57 [PMID: 2186958]
  40. Endocrinology. 2014 Feb;155(2):536-47 [PMID: 24248459]
  41. Brain Res. 1979 Aug 24;172(2):295-302 [PMID: 466475]
  42. J Comp Neurol. 1990 Dec 22;302(4):893-919 [PMID: 2081820]
  43. Gen Comp Endocrinol. 2014 Jan 1;195:164-73 [PMID: 24231682]
  44. J Fish Biol. 2019 Nov;95(5):1350-1354 [PMID: 31513717]
  45. Endocrinology. 2019 Dec 1;160(12):3018-3032 [PMID: 31621882]
  46. Endocrinology. 2016 Nov;157(11):4318-4329 [PMID: 27607248]
  47. Front Neuroendocrinol. 2019 Apr;53:100738 [PMID: 30797802]
  48. Endocrinology. 2015 Feb;156(2):589-99 [PMID: 25406015]
  49. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  50. Am J Physiol. 1994 Sep;267(3 Pt 2):R841-51 [PMID: 8092330]
  51. Biol Reprod. 2018 Sep 1;99(3):565-577 [PMID: 29635430]
  52. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  53. Gen Comp Endocrinol. 1985 Jul;59(1):155-61 [PMID: 3926602]
  54. BMC Evol Biol. 2014 Feb 19;14(1):30 [PMID: 24552453]
  55. iScience. 2024 Feb 22;27(3):109304 [PMID: 38464591]
  56. Physiol Rev. 1948 Apr;28(2):139-79 [PMID: 18865220]
  57. Gen Comp Endocrinol. 2020 May 15;291:113422 [PMID: 32032603]
  58. Front Neurosci. 2012 Jan 24;6:3 [PMID: 22291614]
  59. Front Endocrinol (Lausanne). 2020 Dec 07;11:605068 [PMID: 33365013]
  60. Exp Clin Endocrinol Diabetes. 2007 Nov;115(10):683-9 [PMID: 18058604]
  61. Gen Comp Endocrinol. 2019 Dec 1;284:113075 [PMID: 30500374]
  62. Endocrinology. 2015 Oct;156(10):3804-17 [PMID: 26207345]
  63. Integr Comp Biol. 2008 Nov;48(5):570-87 [PMID: 21669817]
  64. Endocrinology. 2016 Oct;157(10):3994-4002 [PMID: 27560548]

Grants

  1. 23H02306,18K19323,18H04881/MEXT | Japan Society for the Promotion of Science (JSPS)
  2. N/A/Mitsubishi Foundation
  3. N/A/Sumitomo Foundation

MeSH Term

Animals
Gonadotropin-Releasing Hormone
Follicle Stimulating Hormone
Female
Oryzias
Hypothalamus
Neurons
Luteinizing Hormone
Ovarian Follicle
Ovulation

Chemicals

Gonadotropin-Releasing Hormone
Follicle Stimulating Hormone
Luteinizing Hormone

Word Cloud

Created with Highcharts 10.0.0FSHhormonevertebratesLHGnRHFSH-RHfolliculogenesishypothalamicgonadotropin-releasingcholecystokininexpressionovulationregulatedtwodistinctpituitarygonadotropins:follicle-stimulatingluteinizingCurrentlyintriguingconsensussingleneurohormoneregulatessecretionalthoughrequiredtimingfunctionsdifferentHoweverrecentstudiesmanynon-mammalianindicateddispensablefunctionusingmedakamodelteleostsuccessfullyidentifygonadotropinregulatorFSH-releasinghistologicalvitroanalysesdemonstratecholecystokinin-expressingneuronsdirectlyaffectcellsreceptorCck2rbtherebyincreasingreleaseRemarkablyknockoutpathwayminimizesresultsfailureproposeexistence"dualmodel"utilizeLH-RHIdentification

Similar Articles

Cited By (4)