Clusters of multidimensional exercise response patterns and estimated heart failure risk in the Framingham Heart Study.

Patricia E Miller, Priya Gajjar, Gary F Mitchell, Sadiya S Khan, Ramachandran S Vasan, Martin G Larson, Gregory D Lewis, Ravi V Shah, Matthew Nayor
Author Information
  1. Patricia E Miller: Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
  2. Priya Gajjar: Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
  3. Gary F Mitchell: Cardiovascular Engineering, Inc., Norwood, MA, USA.
  4. Sadiya S Khan: Division of Cardiology, Department of Medicine and Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  5. Ramachandran S Vasan: Boston University's and NHLBI's Framingham Heart Study, Framingham, MA, USA.
  6. Martin G Larson: Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
  7. Gregory D Lewis: Division of Cardiology, Cardiovascular Research Center, and Pulmonary Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  8. Ravi V Shah: Division of Cardiology, Vanderbilt Translational and Clinical Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.
  9. Matthew Nayor: Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. ORCID

Abstract

AIMS: New tools are needed to identify heart failure (HF) risk earlier in its course. We evaluated the association of multidimensional cardiopulmonary exercise testing (CPET) phenotypes with subclinical risk markers and predicted long-term HF risk in a large community-based cohort.
METHODS AND RESULTS: We studied 2532 Framingham Heart Study participants [age 53 �� 9 years, 52% women, body mass index (BMI) 28.0 �� 5.3 kg/m, peak oxygen uptake (VO) 21.1 �� 5.9 kg/m in women, 26.4 �� 6.7 kg/m in men] who underwent maximum effort CPET and were not taking atrioventricular nodal blocking agents. Higher peak VO was associated with a lower estimated HF risk score (Spearman correlation r: -0.60 in men and -0.55 in women, P < 0.0001), with an observed overlap of estimated risk across peak VO categories. Hierarchical clustering of 26 separate CPET phenotypes (values residualized on age, sex, and BMI to provide uniformity across these variables) identified three clusters with distinct exercise physiologies: Cluster 1-impaired oxygen kinetics; Cluster 2-impaired vascular; and Cluster 3-favourable exercise response. These clusters were similar in age, sex distribution, and BMI but displayed distinct associations with relevant subclinical phenotypes [Cluster 1-higher subcutaneous and visceral fat and lower pulmonary function; Cluster 2-higher carotid-femoral pulse wave velocity (CFPWV); and Cluster 3-lower CFPWV, C-reactive protein, fat volumes, and higher lung function; all false discovery rate < 5%]. Cluster membership provided incremental variance explained (adjusted R increment of 0.10 in women and men, P < 0.0001 for both) when compared with peak VO alone in association with predicted HF risk.
CONCLUSIONS: Integrated CPET response patterns identify physiologically relevant profiles with distinct associations to subclinical phenotypes that are largely independent of standard risk factor-based assessment, which may suggest alternate pathways for prevention.

Keywords

References

  1. Eur Heart J. 2022 May 21;43(20):1941-1951 [PMID: 35139159]
  2. Circulation. 2022 May 3;145(18):e895-e1032 [PMID: 35363499]
  3. Circulation. 2008 Apr 29;117(17):2279-87 [PMID: 18443249]
  4. JACC Heart Fail. 2018 Aug;6(8):640-649 [PMID: 30007558]
  5. Eur J Heart Fail. 2023 Aug;25(8):1185-1198 [PMID: 37368511]
  6. J Am Coll Cardiol. 2017 Sep 26;70(13):1618-1636 [PMID: 28935040]
  7. Circulation. 2021 Feb 9;143(6):540-552 [PMID: 33198491]
  8. Med Sci Sports Exerc. 2019 Nov;51(11):2251-2256 [PMID: 31107835]
  9. Nat Metab. 2021 Jun;3(6):786-797 [PMID: 34045743]
  10. J Card Fail. 2019 Jul;25(7):537-544 [PMID: 30974161]
  11. ESC Heart Fail. 2024 Oct;11(5):3279-3289 [PMID: 38943268]
  12. Arterioscler Thromb Vasc Biol. 2023 Jan;43(1):163-173 [PMID: 36384270]
  13. Diabetes Care. 2009 Mar;32(3):505-10 [PMID: 19074991]
  14. J Am Coll Cardiol. 2012 Dec 11;60(23):2364-71 [PMID: 23141485]
  15. Am J Respir Crit Care Med. 2016 Jul 1;194(1):77-83 [PMID: 26771117]
  16. JACC Heart Fail. 2023 Feb;11(2):243-249 [PMID: 36754531]
  17. Circulation. 2010 Jul 13;122(2):191-225 [PMID: 20585013]
  18. JAMA Cardiol. 2022 Sep 1;7(9):891-899 [PMID: 35830183]
  19. Am J Respir Crit Care Med. 2013 Jul 15;188(2):231-9 [PMID: 23656466]
  20. Circ Res. 2022 Jan 21;130(2):200-209 [PMID: 34886685]
  21. Eur Heart J. 2021 Nov 21;42(44):4565-4575 [PMID: 34436560]
  22. JAMA Intern Med. 2016 Jan;176(1):87-95 [PMID: 26618471]
  23. Eur J Heart Fail. 2014 Feb;16(2):180-8 [PMID: 24464981]
  24. Circ Heart Fail. 2013 Jul;6(4):627-34 [PMID: 23677924]
  25. Eur Heart J. 2021 Apr 21;42(16):1595-1605 [PMID: 33227126]
  26. Obesity (Silver Spring). 2014 Nov;22(11):2441-9 [PMID: 25136837]
  27. JACC Heart Fail. 2024 Feb;12(2):261-271 [PMID: 37318421]
  28. Am J Epidemiol. 2007 Jun 1;165(11):1328-35 [PMID: 17372189]
  29. JACC Heart Fail. 2020 Aug;8(8):605-617 [PMID: 32535122]
  30. Circulation. 2016 Dec 13;134(24):e653-e699 [PMID: 27881567]
  31. JAMA Cardiol. 2017 Nov 1;2(11):1236-1246 [PMID: 28975197]
  32. JACC Heart Fail. 2020 Aug;8(8):657-666 [PMID: 32653449]
  33. Circulation. 2021 Nov 23;144(21):1664-1678 [PMID: 34743560]
  34. J Am Heart Assoc. 2022 Sep 20;11(18):e026670 [PMID: 36073631]
  35. Circulation. 2010 Oct 5;122(14):1379-86 [PMID: 20855656]
  36. Am J Cardiol. 1986 Feb 15;57(6):450-8 [PMID: 2936235]
  37. Eur Heart J. 2019 Oct 21;40(40):3297-3317 [PMID: 31504452]
  38. Circ Heart Fail. 2017 Jun;10(6): [PMID: 28572213]
  39. Am J Cardiol. 2021 Oct 15;157:56-63 [PMID: 34391575]
  40. Eur J Heart Fail. 2019 Apr;21(4):436-444 [PMID: 30779281]
  41. J Card Fail. 2021 Feb 7;: [PMID: 33662581]
  42. Eur Heart J. 2016 May 14;37(19):1526-34 [PMID: 26819227]

Grants

  1. HHSN268201500001I/NHLBI NIH HHS
  2. R01 HL131029/NHLBI NIH HHS
  3. R01-HL156975/NIH HHS
  4. R01-HL131029/NIH HHS
  5. N01-HC-25195/NHLBI NIH HHS
  6. 15GPSGC24800006/American Heart Association
  7. R01-HL136685/NIH HHS
  8. R01 HL156975/NHLBI NIH HHS
  9. 75N92019D00031/NHLBI NIH HHS
  10. R01 HL136685/NHLBI NIH HHS
  11. /Department of Medicine, Boston University School of Medicine

MeSH Term

Humans
Female
Male
Heart Failure
Middle Aged
Exercise Test
Oxygen Consumption
Risk Assessment
Follow-Up Studies
Risk Factors
Exercise Tolerance

Word Cloud

Created with Highcharts 10.0.0riskClusterHFexerciseCPETphenotypeswomenpeakVOfailuresubclinicalHeartBMIestimateddistinctresponseidentifyheartassociationmultidimensionaltestingpredictedFraminghamStudyoxygen26lower-0menP < 00001acrossagesexclustersassociationsrelevantfatfunctionCFPWVpatternsAIMS:Newtoolsneededearliercourseevaluatedcardiopulmonarymarkerslong-termlargecommunity-basedcohortMETHODSANDRESULTS:studied2532participants[age53 �� 9 years52%bodymassindex280 �� 53 kg/muptake211 �� 59 kg/m4 �� 67 kg/mmen]underwentmaximumefforttakingatrioventricularnodalblockingagentsHigherassociatedscoreSpearmancorrelationr:6055observedoverlapcategoriesHierarchicalclusteringseparatevaluesresidualizedprovideuniformityvariablesidentifiedthreephysiologies:1-impairedkinetics2-impairedvascular3-favourablesimilardistributiondisplayed[Cluster1-highersubcutaneousvisceralpulmonary2-highercarotid-femoralpulsewavevelocity3-lowerC-reactiveproteinvolumeshigherlungfalsediscoveryrate < 5%]membershipprovidedincrementalvarianceexplainedadjustedRincrement010comparedaloneCONCLUSIONS:Integratedphysiologicallyprofileslargelyindependentstandardfactor-basedassessmentmaysuggestalternatepathwayspreventionClustersExercisePrevention

Similar Articles

Cited By (2)