Identification of strains using MALDI-TOF MS combined with long short-term memory neural networks.

Qiqi Mao, Xie Zhang, Zeping Xu, Ya Xiao, Yufei Song, Feng Xu
Author Information
  1. Qiqi Mao: Department of General Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China.
  2. Xie Zhang: Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China.
  3. Zeping Xu: Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China.
  4. Ya Xiao: School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China.
  5. Yufei Song: Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China.
  6. Feng Xu: Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China.

Abstract

The current study aims to develop a new technique for the precise identification of strains, utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a long short-term memory (LSTM) neural network. A total of 48 strains were isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level identification. The other half served as the test set to assess model performance. Traditional PCA dimension reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network markedly enhances the identification of strains. This innovative approach offers an effective and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities of microbial diagnostics.

Keywords

References

  1. Sci Rep. 2022 Aug 24;12(1):14434 [PMID: 36002466]
  2. IEEE J Biomed Health Inform. 2021 Aug;25(8):2917-2927 [PMID: 33687851]
  3. Methods Mol Biol. 2023;2591:123-134 [PMID: 36350546]
  4. Nat Clin Pract Oncol. 2008 Oct;5(10):588-99 [PMID: 18695711]
  5. Chemosphere. 2019 Apr;220:486-492 [PMID: 30594800]
  6. Talanta. 2004 Jun 17;63(3):527-32 [PMID: 18969464]
  7. MethodsX. 2020 May 16;7:100920 [PMID: 32509538]
  8. Trends Microbiol. 2017 Jun;25(6):447-455 [PMID: 28094091]
  9. J Neuroeng Rehabil. 2021 Oct 21;18(1):153 [PMID: 34674720]
  10. J Microbiol. 2018 Apr;56(4):209-216 [PMID: 29492868]
  11. Comput Struct Biotechnol J. 2021 Nov 09;19:6157-6168 [PMID: 34938408]
  12. Enferm Infecc Microbiol Clin (Engl Ed). 2021 Apr;39(4):192-200 [PMID: 32345492]
  13. Cells. 2019 Oct 14;8(10): [PMID: 31615102]
  14. Clin Microbiol Infect. 2020 Oct;26(10):1310-1317 [PMID: 32217160]
  15. Anal Chem. 2018 Sep 4;90(17):10400-10408 [PMID: 30091898]
  16. PLoS One. 2021 Dec 23;16(12):e0259140 [PMID: 34941869]
  17. Expert Rev Proteomics. 2015;12(6):595-605 [PMID: 26472137]
  18. Clin Lab Med. 2013 Sep;33(3):589-609 [PMID: 23931840]
  19. PLoS One. 2021 Feb 3;16(2):e0245982 [PMID: 33534819]
  20. PLoS One. 2023 Dec 1;18(12):e0294701 [PMID: 38039283]
  21. Stud Health Technol Inform. 2020 Jun 26;272:199-202 [PMID: 32604635]

MeSH Term

Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Escherichia coli
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0MALDI-TOFMSneuralidentificationstrainsnetworkLSTMspectra0longshort-termmemorystrain-levelmodelmatrix-assistedlaserdesorptionionizationtime-of-flightmassspectrometrycombined48datatrainingaccuracycurrentstudyaimsdevelopnewtechniquepreciseutilizingtotalisolatedculturedtrypticsoyagarmedium24hoursgenerationEighthundredobtainedperstrainresultingdatabase38400Fiftypercentutilizedfine-tunedparametershalfservedtestsetassessperformanceTraditionalPCAdimensionreductionindicated47unclassifiablecontrastdemonstratedremarkableefficacy20epochsachievedlossvalue0524999precision985recall982testedunseenattainedoverall9224%integrationmarkedlyenhancesinnovativeapproachofferseffectiveaccuratetoolMS-basedthusexpandinganalyticalcapabilitiesmicrobialdiagnosticsIdentificationusingnetworksEscherichiacoli

Similar Articles

Cited By