Metaproteomics-informed stoichiometric modeling reveals the responses of wetland microbial communities to oxygen and sulfate exposure.

Dongyu Wang, Pieter Candry, Kristopher A Hunt, Zachary Flinkstrom, Zheng Shi, Yunlong Liu, Neil Q Wofford, Michael J McInerney, Ralph S Tanner, Kara B De Le��n, Jizhong Zhou, Mari-Karoliina H Winkler, David A Stahl, Chongle Pan
Author Information
  1. Dongyu Wang: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  2. Pieter Candry: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. ORCID
  3. Kristopher A Hunt: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. ORCID
  4. Zachary Flinkstrom: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. ORCID
  5. Zheng Shi: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  6. Yunlong Liu: School of Computer Science, University of Oklahoma, Norman, OK, USA.
  7. Neil Q Wofford: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  8. Michael J McInerney: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  9. Ralph S Tanner: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  10. Kara B De Le��n: School of Biological Sciences, University of Oklahoma, Norman, OK, USA. ORCID
  11. Jizhong Zhou: School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
  12. Mari-Karoliina H Winkler: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. ORCID
  13. David A Stahl: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
  14. Chongle Pan: School of Biological Sciences, University of Oklahoma, Norman, OK, USA. cpan@ou.edu. ORCID

Abstract

Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O) during droughts, or to sulfate (SO) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO and O levels on microbial methane (CH) and carbon dioxide (CO) emissions. The results uncovered the adaptive responses of this community to changes in SO and O availability and identified altered microbial guilds and metabolic processes driving CH and CO emissions. Elevated SO reduced CH emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O shifted the greenhouse gas emissions from CH to CO. The metabolic effects of combined SO and O exposures on CH and CO emissions were similar to those of O exposure alone. The reduction in CH emission by increased SO and O was much greater than the concomitant increase in CO emission. Thus, greater SO and O exposure in wetlands is expected to reduce the aggregate warming effect of CH and CO. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO to produce acetate, HS, and CO when SO is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH and CO emissions from wetlands under future climate scenarios.

References

  1. Proteomics. 2013 Feb;13(3-4):493-503 [PMID: 23019139]
  2. Mol Cell Proteomics. 2019 Aug 9;18(8 suppl 1):S82-S91 [PMID: 31235611]
  3. Glob Chang Biol. 2021 Nov;27(22):5831-5847 [PMID: 34409684]
  4. Science. 2001 Oct 26;294(5543):804-8 [PMID: 11679658]
  5. J Proteome Res. 2018 Apr 6;17(4):1596-1605 [PMID: 29436230]
  6. Nat Commun. 2020 Jun 29;11(1):3268 [PMID: 32601270]
  7. Appl Environ Microbiol. 2019 May 30;85(12): [PMID: 30979841]
  8. Nat Biotechnol. 2010 Jan;28(1):83-9 [PMID: 20010810]
  9. Waste Manag. 2013 Apr;33(4):813-9 [PMID: 23290270]
  10. Nat Microbiol. 2019 Aug;4(8):1356-1367 [PMID: 31110364]
  11. PeerJ. 2019 Jul 26;7:e7359 [PMID: 31388474]
  12. Microbiome. 2023 Aug 19;11(1):187 [PMID: 37596690]
  13. Nat Commun. 2016 Apr 13;7:11257 [PMID: 27071849]
  14. Science. 2022 Jul;377(6601):eabp9960 [PMID: 35771903]
  15. Nat Rev Microbiol. 2019 Dec;17(12):725-741 [PMID: 31548653]
  16. Nat Protoc. 2008;3(9):1444-51 [PMID: 18772871]
  17. Appl Microbiol Biotechnol. 2008 Apr;78(6):1045-55 [PMID: 18305937]
  18. Microbiome. 2017 Dec 02;5(1):157 [PMID: 29197424]
  19. Annu Rev Biochem. 2007;76:223-41 [PMID: 17328677]
  20. Nat Clim Chang. 2023 May;13(5):478-483 [PMID: 37193246]
  21. Nat Commun. 2015 Jun 30;6:7477 [PMID: 26123199]
  22. Nat Commun. 2020 May 18;11(1):2458 [PMID: 32424260]
  23. mBio. 2023 Apr 25;14(2):e0318922 [PMID: 36847519]
  24. Nat Rev Microbiol. 2020 Jan;18(1):35-46 [PMID: 31586158]
  25. Nat Rev Microbiol. 2023 Jan;21(1):6-20 [PMID: 35999468]
  26. Genome Res. 2017 May;27(5):824-834 [PMID: 28298430]
  27. mBio. 2015 May 19;6(3):e00066-15 [PMID: 25991679]
  28. J Hazard Mater. 2022 May 5;429:128364 [PMID: 35114457]
  29. Nat Rev Microbiol. 2021 Dec;19(12):774-785 [PMID: 34183820]
  30. Nat Commun. 2020 Mar 18;11(1):1440 [PMID: 32188849]
  31. Biotechnol Biofuels. 2012 Jan 04;5(1):2 [PMID: 22214220]
  32. Appl Environ Microbiol. 1982 Jun;43(6):1373-9 [PMID: 16346033]
  33. Nat Rev Microbiol. 2009 Aug;7(8):568-77 [PMID: 19609258]
  34. Nat Rev Microbiol. 2019 Sep;17(9):569-586 [PMID: 31213707]
  35. Science. 2019 Nov 15;366(6467):886-890 [PMID: 31727838]
  36. Nat Rev Microbiol. 2020 Sep;18(9):491-506 [PMID: 32499497]
  37. Nat Commun. 2022 Jul 23;13(1):4260 [PMID: 35871070]
  38. ISME J. 2016 Jun;10(6):1400-12 [PMID: 26636551]
  39. Curr Biol. 2020 Oct 5;30(19):R1176-R1188 [PMID: 33022263]
  40. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  41. Microbiome. 2021 Mar 22;9(1):67 [PMID: 33752740]
  42. FEMS Microbiol Ecol. 2022 Mar 16;98(3): [PMID: 35170736]
  43. Ecology. 2020 Dec;101(12):e03148 [PMID: 33459360]
  44. Glob Chang Biol. 2023 Sep;29(18):5169-5183 [PMID: 37386740]
  45. Biotechnol Adv. 2018 Nov 15;36(7):1971-1983 [PMID: 30144516]
  46. Bioinformatics. 2020 Apr 1;36(7):2251-2252 [PMID: 31742321]
  47. Environ Technol. 2022 Aug;43(20):3149-3160 [PMID: 33840369]
  48. Proc Natl Acad Sci U S A. 2009 May 19;106(20):8123-7 [PMID: 19451639]
  49. Microbiol Rev. 1996 Dec;60(4):609-40 [PMID: 8987358]

Grants

  1. R01 AT011618/NCCIH NIH HHS
  2. R01AT011618/U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  3. FWP SCW1677/DOE | SC | Biological and Environmental Research (BER)

MeSH Term

Wetlands
Sulfates
Oxygen
Proteomics
Methane
Carbon Dioxide
Soil Microbiology
Microbiota
Bacteria
Climate Change

Chemicals

Sulfates
Oxygen
Methane
Carbon Dioxide

Word Cloud

Created with Highcharts 10.0.0SOOCHCOemissionsmicrobialimpactwetlandcarbonwetlandsstoichiometricmodelingmetabolicexposuregreaterchangesgreenhousegassoiloxygensulfate-drivingelevatedresponsesprocessesElevatedemissionClimatesignificantlySpecificallymayexposeddroughtsresultsealevelrisestressorsseparatelytogetherfoodwebscyclingstillunderstoodinvestigateintegratedgeochemicalanalysisproteogenomicscharacterizelevelsmethanedioxideresultsuncoveredadaptivecommunityavailabilityidentifiedalteredguildsreducedhydrogenotrophicmethanogenesissuppressedacetoclasticshiftedeffectscombinedexposuressimilaralonereductionincreasedmuchconcomitantincreaseThusexpectedreduceaggregatewarmingeffectMetaproteomicsrevealeduniquesubnetworkinvolvingmetabolismconvertslactateproduceacetateHSoxicconditionsstudyprovidesquantitativeresolutionkeynecessarypredictionfutureclimatescenariosMetaproteomics-informedrevealscommunities

Similar Articles

Cited By (1)