Structures and Efflux Mechanisms of the AcrAB-TolC Pump.
Zhili Yu, Xiaodong Shi, Zhao Wang
Author Information
Zhili Yu: Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
Xiaodong Shi: Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Zhao Wang: Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA. zhaow@bcm.edu.
The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA et al (2021) Structure, assembly, and function of tripartite efflux and type 1 secretion Systems in Gram-Negative Bacteria. Chem Rev 121(9):5479–5596
[PMID: 33909410]
Andersen C, Koronakis E, Bokma E, Eswaran J, Humphreys D, Hughes C et al (2002) Transition to the open state of the TolC periplasmic tunnel entrance. Proc National Acad Sci. 99(17):11103–11108
[DOI: 10.1073/pnas.162039399]
Antão EM, Vincze S, Hanke R, Klimmek L, Suchecka K, Lübke-Becker A et al (2018) Antibiotic resistance, the 3As and the road ahead. Gut Pathog 10(1):52
[PMID: 30598701]
Asano S, Engel BD, Baumeister W (2016) In situ Cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428(2):332–343
[PMID: 26456135]
Atta-ur-Rahman, Choudhary MI (2013) Frontiers in Anti-Infective Drug Discovery [Internet]
Bavro VN, Pietras Z, Furnham N, Pérez-Cano L, Fernández-Recio J, Pei XY et al (2008) Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 30(1):114–121
[PMID: 18406332]
Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727
[PMID: 19836392]
Beck M, Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol 26(11):825–837
[PMID: 27671779]
Bhardwaj AK, Mohanty P (2012) Bacterial efflux pumps involved in multidrug resistance and their inhibitors: Rejuvinating the antimicrobial chemotherapy. Recent Patents Anti-infective Drug Discov 7(1):73–89
[DOI: 10.2174/157489112799829710]
Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9(10):1165–1177
[PMID: 25405886]
Blair JMA, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV (2015) Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemoth. 70(2):424–431
[DOI: 10.1093/jac/dku380]
Cao H, Xia T, Li Y, Xu Z, Bougouffa S, Lo YK et al (2018) A multidrug resistant clinical P. Aeruginosa isolate in the MLST550 clonal complex: uncoupled quorum sensing modulates the interplay of virulence and resistance. Biorxiv:415000
Chen M, Shi X, Yu Z, Fan G, Serysheva II, Baker ML et al (2022) In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure 30(1):107–113.e3
[PMID: 34506732]
Chmielewski D, Schmid M, Simmons G, Jin J, Chiu W. In situ alphavirus assembly and budding mechanism revealed by cellular CryoET. 2021;
Chreifi G, Chen S, Metskas LA, Kaplan M, Jensen GJ (2019) Rapid tilt-series acquisition for electron cryotomography. J Struct Biol 205(Bioinformatics 27 2011):163–169
[PMID: 30639925]
Das D, Xu QS, Lee JY, Ankoudinova I, Huang C, Lou Y et al (2007) Crystal structure of the multidrug efflux transporter AcrB at 3.1Å resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 158(3):494–502
[PMID: 17275331]
Daury L, Orange F, Taveau JC, Verchère A, Monlezun L, Gounou C et al (2016) Tripartite assembly of RND multidrug efflux pumps. Nat Commun 7(1):10731
[PMID: 26867482]
Delmar JA, Su CC, Yu EW (2014) Bacterial multidrug efflux transporters. Biophysics 43(1):93–117
Drew D, Klepsch MM, Newstead S, Flaig R, Gier JWD, Iwata S et al (2009) The structure of the efflux pump AcrB in complex with bile acid. Mol Membr Biol 25(8):677–682
[DOI: 10.1080/09687680802552257]
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF (2015) Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struc Biol. 33:76–91
[DOI: 10.1016/j.sbi.2015.07.015]
Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T et al (2014) Structure of the AcrAB–TolC multidrug efflux pump. Nature 509(7501):512
[PMID: 24747401]
Eicher T, Cha H, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc National Acad Sci. 109(15):5687–5692
[DOI: 10.1073/pnas.1114944109]
Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L, Verrey F et al (2014) Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. elife 3:e03145
[PMID: 25248080]
Eisaku Y, Hidatoshi I (2007) Method or agent for inhibiting the function of efflux pump Pseudomonas aeruginosa [Internet]. [cited 2007 May 9]
Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V (2004) Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struc Biol 14(6):741–747
[DOI: 10.1016/j.sbi.2004.10.003]
Fernandez-Recio J, Walas F, Federici L, Pratap JV, Bavro VN, Miguel RN et al (2004) A model of a transmembrane drug-efflux pump from gram-negative bacteria. FEBS Lett 578(1–2):5–9
[PMID: 15581607]
Frauenfeld J, Löving R, Armache JP, Sonnen AFP, Guettou F, Moberg P et al (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13(4):345–351
[PMID: 26950744]
Ge Q, Yamada Y, Zgurskaya H (2009) The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J Bacteriol 191(13):4365–4371
[PMID: 19411330]
Gröbner S, Linke D, Schütz W, Fladerer C, Madlung J, Autenrieth IB et al (2009) Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J Med Microbiol 58(7):912–922
[PMID: 19502377]
Gumbart JC, Ferreira JL, Hwang H, Hazel AJ, Cooper CJ, Parks JM et al (2021) Lpp positions peptidoglycan at the AcrA-TolC interface in the AcrAB-TolC multidrug efflux pump. Biophys J 120(18):3973–3982
[PMID: 34411576]
Hocquet D, Vogne C, Garch FE, Vejux A, Gotoh N, Lee A et al (2003) MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Ch. 47(4):1371–1375
[DOI: 10.1128/AAC.47.4.1371-1375.2003]
Hu B, Lara-Tejero M, Kong Q, Galán JE, Liu J (2017) In situ molecular architecture of the salmonella type III secretion machine. Cell 168(6):1065–1074.e10
[PMID: 28283062]
Kaplan M, Chang YW, Oikonomou CM, Nicolas WJ, Jewett AI, Kreida S et al (2023) Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 8(7):1267–1279
[PMID: 37349588]
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM (2019) AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 1459(1):38–68
[PMID: 31588569]
Koronakis V (2003) TolC—the bacterial exit duct for proteins and drugs. FEBS Lett 555(1):66–71
[PMID: 14630321]
Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405(6789):914–919
[PMID: 10879525]
Lee SC, Knowles TJ, Postis VLG, Jamshad M, Parslow RA, Lin Y et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162
[PMID: 27254461]
Li XZ, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev 28(2):337–418
[PMID: 25788514]
Lobedanz S, Bokma E, Symmons MF, Koronakis E, Hughes C, Koronakis V (2007) A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc National Acad Sci. 104(11):4612–4617
[DOI: 10.1073/pnas.0610160104]
Ma M, Lustig M, Salem M, Mengin-Lecreulx D, Phan G, Broutin I (2021) MexAB-OprM efflux pump interaction with the peptidoglycan of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 22(10):5328
[PMID: 34070225]
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA et al (2014) Multistate point-prevalence survey of health care–associated infections. New Engl J Med 370(13):1198–1208
[PMID: 24670166]
Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Ch. 44(12):3322–3327
[DOI: 10.1128/AAC.44.12.3322-3327.2000]
Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P (2006) Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14(3):577–587
[PMID: 16531241]
Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443(7108):173–179
[PMID: 16915237]
Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419(6907):587–593
[PMID: 12374972]
Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480(7378):565–569
[PMID: 22121023]
Narita S, Eda S, Yoshihara E, Nakae T (2003) Linkage of the efflux-pump expression level with substrate extrusion rate in the MexAB–OprM efflux pump of Pseudomonas aeruginosa. Biochem Bioph Res Co 308(4):922–926
[DOI: 10.1016/S0006-291X(03)01512-2]
Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178(20):5853–5859
[PMID: 8830678]
Nikaido H (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 27(s1):S32–S41
[PMID: 9710669]
Nikaido H (2009) Multidrug resistance in bacteria. Biochemistry 78(1):119–146
Oikonomou CM, Chang YW, Jensen GJ (2016) A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 14(4):205–220
[PMID: 26923112]
O’Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D et al (2020) In-cell architecture of an actively transcribing-translating expressome. Science 369(6503):554–557
[PMID: 32732422]
Pei XY, Hinchliffe P, Symmons MF, Koronakis E, Benz R, Hughes C et al (2011) Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc National Acad Sci 108(5):2112–2117
[DOI: 10.1073/pnas.1012588108]
Pitout JDD, Nordmann P, Laupland KB, Poirel L (2005) Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemoth. 56(1):52–59
[DOI: 10.1093/jac/dki166]
Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microb Biotech 3(2):255–264
Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemoth 56(1):20–51
[DOI: 10.1093/jac/dki171]
Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J et al (2018) Structure and activity of lipid bilayer within a membrane-protein transporter. Proc National Acad Sci. 115(51):12985–12990
[DOI: 10.1073/pnas.1812526115]
Sarkar P, Bosneaga E, Yap EG, Das J, Tsai WT, Cabal A et al (2014) Electron tomography of Cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ. PLoS One 9(9):e106928
[PMID: 25207917]
Schindler BD, Kaatz GW (2016) Multidrug efflux pumps of gram-positive bacteria. Drug Resist Update 27:1–13
[DOI: 10.1016/j.drup.2016.04.003]
Schmid MF (2011) Single-particle electron cryotomography (cryoET). Adv Protein Chem Str 82:37–65
Schuldiner S (2018) The Escherichia coli effluxome. Res Microbiol 169(7–8):357–362
[PMID: 29574104]
Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006a) Asymmetric structure of trimeric AcrB from Escherichia coli.
Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006b) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313(5791):1295–1298
[PMID: 16946072]
Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5(1):e7
[PMID: 17194213]
Sharff A, Fanutti C, Shi J, Calladine C, Luisi B (2001) The role of the TolC family in protein transport and multidrug efflux. Eur J Biochem 268(19):5011–5026
[PMID: 11589692]
Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I et al (2019) In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun 10(1):2635
[PMID: 31201302]
Sibert BS, Kim JY, Yang JE, Wright ER (2021) Micropatterning transmission electron microscopy grids to direct cell positioning within whole-cell Cryo-electron tomography workflows. J Vis Exp Jove (175). https://doi.org/10.3791/62992
Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Csh Perspect Biol 2(5):a000414
Singh R, Swick MC, Ledesma KR, Yang Z, Hu M, Zechiedrich L et al (2012) Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Ch. 56(4):1680–1685
[DOI: 10.1128/AAC.05693-11]
Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding X et al (2016) Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc National Acad Sci. 113(13):3509–3514
[DOI: 10.1073/pnas.1602472113]
Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H et al (2006) Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188(20):7290–7296
[PMID: 17015668]
Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L (2011) Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance ‡. Antimicrob Agents Ch 55(2):921–924
[DOI: 10.1128/AAC.00996-10]
Symmons MF, Marshall RL, Bavro VN (2015) Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 6:513
[PMID: 26074901]
Takatsuka Y, Nikaido H (2009) Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 191(6):1729–1737
[PMID: 19060146]
Tamura N, Murakami S, Oyama Y, Ishiguro M, Yamaguchi A (2005) Direct interaction of multidrug efflux transporter AcrB and outer Membrane Channel TolC detected via site-directed disulfide cross-linking †. Biochemistry 44(33):11115–11121
[PMID: 16101295]
Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J (2021) Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat Methods 18(2):186–193
[PMID: 33542511]
Tikhonova EB, Dastidar V, Rybenkov VV, Zgurskaya HI (2009) Kinetic control of TolC recruitment by multidrug efflux complexes. Proc National Acad Sci. 106(38):16416–16421
[DOI: 10.1073/pnas.0906601106]
Tikhonova EB, Yamada Y, Zgurskaya HI (2011) Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol 18(4):454–463
[PMID: 21513882]
Tikhonova EB, Zgurskaya HI (2004) AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex*. J Biol Chem 279(31):32116–32124
[PMID: 15155734]
Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system. Mol Microbiol 53(2):697–706
[PMID: 15228545]
Tsukagoshi N, Aono R (2000) Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J Bacteriol 182(17):4803–4810
[PMID: 10940021]
Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K et al (2019) Structures of the wild-type MexAB–OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun 10(1):1520
[PMID: 30944318]
Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55(4):337–341
[PMID: 21982781]
Viale P, Giannella M, Tedeschi S, Lewis R (2015) Treatment of MDR-gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol 24:30–37
[PMID: 26210268]
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF et al (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. elife 6:e24905
[PMID: 28355133]
Wang-Kan X, Rodríguez-Blanco G, Southam AD, Winder CL, Dunn WB, Ivens A et al (2021) Metabolomics reveal potential natural substrates of AcrB in Escherichia coli and salmonella enterica Serovar typhimurium. MBio 12(2):e00109–e00121
[PMID: 33785633]
Webber MA, Piddock LJV (2002) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemoth. 51(1):9–11
[DOI: 10.1093/jac/dkg050]
Weston N, Sharma P, Ricci V, Piddock L (2018) Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 169(7–8):425–431
[PMID: 29128373]
Xu Y, Moeller A, Jun SY, Le M, Yoon BY, Kim JS et al (2012) Assembly and channel opening of outer membrane protein in tripartite drug efflux pumps of gram-negative bacteria*. J Biol Chem 287(15):11740–11750
[PMID: 22308040]
Yang S, Lopez CR, Zechiedrich EL (2006) Quorum sensing and multidrug transporters in Escherichia coli. Proc National Acad Sci. 103(7):2386–2391
[DOI: 10.1073/pnas.0502890102]
Yao X, Fan X, Yan N (2020) Cryo-EM analysis of a membrane protein embedded in the liposome. Proc National Acad Sci. 117(31):18497–18503
[DOI: 10.1073/pnas.2009385117]
Yu EW, McDermott G, Zgurskaya HI, Nikaido H Jr, DEK. (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300(5621):976–980
[PMID: 12738864]
Yue Z, Chen W, Zgurskaya HI, Shen J (2017) Constant pH molecular dynamics reveals how proton release drives the conformational transition of a transmembrane efflux pump. J Chem Theory Comput 13(12):6405–6414
[PMID: 29117682]
Zgurskaya HI, Nikaido H (1999) AcrA is a highly asymmetric protein capable of spanning the periplasm 1 1Edited by I. B. Holland. J Mol Biol 285(1):409–420
[PMID: 9878415]
Zgurskaya HI, Nikaido H (2000) Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J Bacteriol 182(15):4264–4267
[PMID: 10894736]
Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q, Krishnamoorthy G (2009) Structural and functional diversity of bacterial membrane fusion proteins. Biochimica Et Biophysica Acta Bba–Proteins Proteom 1794(5):794–807
[DOI: 10.1016/j.bbapap.2008.10.010]
Zhang P (2019) Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struc Biol. 58:249–258
[DOI: 10.1016/j.sbi.2019.05.021]
Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K, Yamaguchi A (2018) Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 9(1):124
[PMID: 29317622]