Maturation and Assembly of mTOR Complexes by the HSP90-R2TP-TTT Chaperone System: Molecular Insights and Mechanisms.
Andr��s L��pez-Perrote, Marina Serna, Oscar Llorca
Author Information
Andr��s L��pez-Perrote: Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fern��ndez Almagro 3, Madrid, Spain. aperrote@cnio.es.
Marina Serna: Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fern��ndez Almagro 3, Madrid, Spain.
Oscar Llorca: Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fern��ndez Almagro 3, Madrid, Spain. ollorca@cnio.es.
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.
Amit M, Weisberg SJ, Nadler-Holly M, McCormack EA, Feldmesser E, Kaganovich D, Willison KR, Horovitz A (2010) Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes. J Mol Biol 401(3):532���543. https://doi.org/10.1016/j.jmb.2010.06.037
[DOI: 10.1016/j.jmb.2010.06.037]
Assimon VA, Tang Y, Vargas JD, Lee GJ, Wu ZY, Lou K, Yao B, Menon MK, Pios A, Perez KC, Madriaga A, Buchowiecki PK, Rolfe M, Shawver L, Jiao X, Le Moigne R, Zhou HJ, Anderson DJ (2019) CB-6644 is a selective inhibitor of the RUVBL1/2 complex with anticancer activity. ACS Chem Biol 14(2):236���244. https://doi.org/10.1021/acschembio.8b00904
[DOI: 10.1021/acschembio.8b00904]
Ayala R, Willhoft O, Aramayo RJ, Wilkinson M, McCormack EA, Ocloo L, Wigley DB, Zhang X (2018) Structure and regulation of the human INO80-nucleosome complex. Nature 556(7701):391���395. https://doi.org/10.1038/s41586-018-0021-6
[DOI: 10.1038/s41586-018-0021-6]
Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T (2016) Architecture of human mTOR complex 1. Science 351(6268):48���52. https://doi.org/10.1126/science.aaa3870
[DOI: 10.1126/science.aaa3870]
Biebl MM, Buchner J (2019) Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 11(9). https://doi.org/10.1101/cshperspect.a034017
Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T, Bardoni B, Krol A, Branlant C, Allmang C, Bertrand E, Charpentier B (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180(3):579���595. https://doi.org/10.1083/jcb.200708110
[DOI: 10.1083/jcb.200708110]
Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M, Azzag K, Robert MC, Ahmad Y, Neel H, Lamond AI, Bertrand E (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912���924. https://doi.org/10.1016/j.molcel.2010.08.023
[DOI: 10.1016/j.molcel.2010.08.023]
Brown MC, Gromeier M (2017) MNK controls mTORC1:substrate association through regulation of TELO2 binding with mTORC1. Cell Rep 18(6):1444���1457. https://doi.org/10.1016/j.celrep.2017.01.023
[DOI: 10.1016/j.celrep.2017.01.023]
Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893���2904. https://doi.org/10.1101/gad.1256804
[DOI: 10.1101/gad.1256804]
Chen T, Yuan Z, Lei Z, Duan J, Xue J, Lu T, Yan G, Zhang L, Liu Y, Li Q, Zhang Y (2022) Hippocalcin-Like 1 blunts liver lipid metabolism to suppress tumorigenesis via directly targeting RUVBL1-mTOR signaling. Theranostics 12(17):7450���7464. https://doi.org/10.7150/thno.75936
[DOI: 10.7150/thno.75936]
Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, Wu Z, Huang M, Wong CCL, Wang HW, Wang J, Yang H, Xu Y (2018) Cryo-EM structure of human mTOR complex 2. Cell Res 28(5):518���528. https://doi.org/10.1038/s41422-018-0029-3
[DOI: 10.1038/s41422-018-0029-3]
Cuellar J, Ludlam WG, Tensmeyer NC, Aoba T, Dhavale M, Santiago C, Bueno-Carrasco MT, Mann MJ, Plimpton RL, Makaju A, Franklin S, Willardson BM, Valpuesta JM (2019) Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nat Commun 10(1):2865. https://doi.org/10.1038/s41467-019-10781-1
[DOI: 10.1038/s41467-019-10781-1]
Dauden MI, Lopez-Perrote A, Llorca O (2021) RUVBL1-RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Curr Opin Struct Biol 67:78���85. https://doi.org/10.1016/j.sbi.2020.08.010
[DOI: 10.1016/j.sbi.2020.08.010]
David-Morrison G, Xu Z, Rui YN, Charng WL, Jaiswal M, Yamamoto S, Xiong B, Zhang K, Sandoval H, Duraine L, Zuo Z, Zhang S, Bellen HJ (2016) WAC regulates mTOR activity by acting as an adaptor for the TTT and pontin/reptin complexes. Dev Cell 36(2):139���151. https://doi.org/10.1016/j.devcel.2015.12.019
[DOI: 10.1016/j.devcel.2015.12.019]
Elias-Villalobos A, Toullec D, Faux C, Seveno M, Helmlinger D (2019) Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nat Commun 10(1):5237. https://doi.org/10.1038/s41467-019-13243-w
[DOI: 10.1038/s41467-019-13243-w]
Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and nucleotide-dependent conformational changes of the Rvb1-Rvb2 AAA+ complex revealed by cryoelectron microscopy. Structure 24(5):657���666. https://doi.org/10.1016/j.str.2016.03.018
[DOI: 10.1016/j.str.2016.03.018]
Gano JJ, Simon JA (2010) A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics 9(2):255���270. https://doi.org/10.1074/mcp.M900261-MCP200
[DOI: 10.1074/mcp.M900261-MCP200]
Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, Svergun DI, Donner P, Matias PM, Carrondo MA (2011) Structural and functional insights into a dodecameric molecular machine ��� the RuvBL1/RuvBL2 complex. J Struct Biol 176(3):279���291. https://doi.org/10.1016/j.jsb.2011.09.001
[DOI: 10.1016/j.jsb.2011.09.001]
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214���226. https://doi.org/10.1016/j.molcel.2008.03.003
[DOI: 10.1016/j.molcel.2008.03.003]
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484���14494. https://doi.org/10.1074/jbc.273.23.14484
[DOI: 10.1074/jbc.273.23.14484]
Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M (2007) Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 12(12):1357���1370. https://doi.org/10.1111/j.1365-2443.2007.01141.x
[DOI: 10.1111/j.1365-2443.2007.01141.x]
Henri J, Chagot ME, Bourguet M, Abel Y, Terral G, Maurizy C, Aigueperse C, Georgescauld F, Vandermoere F, Saint-Fort R, Behm-Ansmant I, Charpentier B, Pradet-Balade B, Verheggen C, Bertrand E, Meyer P, Cianferani S, Manival X, Quinternet M (2018) Deep structural analysis of RPAP3 and PIH1D1, two components of the HSP90 co-chaperone R2TP complex. Structure 26(9):1196���1209. e1198. https://doi.org/10.1016/j.str.2018.06.002
[DOI: 10.1016/j.str.2018.06.002]
Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839���850. https://doi.org/10.1016/j.molcel.2010.08.037
[DOI: 10.1016/j.molcel.2010.08.037]
Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24(17):1939���1950. https://doi.org/10.1101/gad.1934210
[DOI: 10.1101/gad.1934210]
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505���509. https://doi.org/10.1038/nature22366
[DOI: 10.1038/nature22366]
Imseng S, Aylett CH, Maier T (2018) Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr Opin Struct Biol 49:177���189. https://doi.org/10.1016/j.sbi.2018.03.010
[DOI: 10.1016/j.sbi.2018.03.010]
Izumi N, Yamashita A, Hirano H, Ohno S (2012) Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci 103(1):50���57. https://doi.org/10.1111/j.1349-7006.2011.02112.x
[DOI: 10.1111/j.1349-7006.2011.02112.x]
Izumi N, Yamashita A, Iwamatsu A, Kurata R, Nakamura H, Saari B, Hirano H, Anderson P, Ohno S (2010) AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci Signal 3(116):ra27. https://doi.org/10.1126/scisignal.2000468
[DOI: 10.1126/scisignal.2000468]
Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Therien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27(2):262���274. https://doi.org/10.1016/j.molcel.2007.06.027
[DOI: 10.1016/j.molcel.2007.06.027]
Ju D, Zhang W, Yan J, Zhao H, Li W, Wang J, Liao M, Xu Z, Wang Z, Zhou G, Mei L, Hou N, Ying S, Cai T, Chen S, Xie X, Lai L, Tang C, Park N, Takahashi JS, Huang N, Qi X, Zhang EE (2020) Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Sci Transl Med 12(542). https://doi.org/10.1126/scitranslmed.aba0769
Kabir MA, Kaminska J, Segel GB, Bethlendy G, Lin P, Della Seta F, Blegen C, Swiderek KM, Zoladek T, Arndt KT, Sherman F (2005) Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 22(3):219���239. https://doi.org/10.1002/yea.1210
[DOI: 10.1002/yea.1210]
Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, Iemura S, Natsume T, Mizushima N (2010) Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285(26):20109���20116. https://doi.org/10.1074/jbc.M110.121699
[DOI: 10.1074/jbc.M110.121699]
Kakihara Y, Kiguchi T, Ohazama A, Saeki M (2020) R2TP/PAQosome as a promising chemotherapeutic target in cancer. Jpn Dent Sci Rev 56(1):38���42. https://doi.org/10.1016/j.jdsr.2019.08.001
[DOI: 10.1016/j.jdsr.2019.08.001]
Kanemaki M, Makino Y, Yoshida T, Kishimoto T, Koga A, Yamamoto K, Yamamoto M, Moncollin V, Egly JM, Muramatsu M, Tamura T (1997) Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem Biophys Res Commun 235(1):64���68. https://doi.org/10.1006/bbrc.1997.6729
[DOI: 10.1006/bbrc.1997.6729]
Kanoh J, Yanagida M (2007) Tel2: a common partner of PIK-related kinases and a link between DNA checkpoint and nutritional response? Genes Cells 12(12):1301���1304. https://doi.org/10.1111/j.1365-2443.2007.01142.x
[DOI: 10.1111/j.1365-2443.2007.01142.x]
Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270(5233):50���51. https://doi.org/10.1126/science.270.5233.50
[DOI: 10.1126/science.270.5233.50]
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935���945. https://doi.org/10.1038/ncb1753
[DOI: 10.1038/ncb1753]
Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21(1):63���71. https://doi.org/10.1038/s41556-018-0205-1
[DOI: 10.1038/s41556-018-0205-1]
Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY, Blenis J (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172���185. https://doi.org/10.1016/j.molcel.2012.10.003
[DOI: 10.1016/j.molcel.2012.10.003]
Kim Y, Park J, Joo SY, Kim BG, Jo A, Lee H, Cho Y (2022) Structure of the human TELO2-TTI1-TTI2 complex. J Mol Biol 434(2):167370. https://doi.org/10.1016/j.jmb.2021.167370
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274���293. https://doi.org/10.1016/j.cell.2012.03.017
[DOI: 10.1016/j.cell.2012.03.017]
Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28(20):3067���3073. https://doi.org/10.1038/emboj.2009.281
[DOI: 10.1038/emboj.2009.281]
Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21(4):183���203. https://doi.org/10.1038/s41580-019-0199-y
[DOI: 10.1038/s41580-019-0199-y]
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457���468. https://doi.org/10.1016/s1097-2765(02)00636-6
[DOI: 10.1016/s1097-2765(02)00636-6]
Lopez-Perrote A, Hug N, Gonzalez-Corpas A, Rodriguez CF, Serna M, Garcia-Martin C, Boskovic J, Fernandez-Leiro R, Caceres JF, Llorca O (2020) Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM. Elife 9. https://doi.org/10.7554/eLife.63042
Lopez-Perrote A, Munoz-Hernandez H, Gil D, Llorca O (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40(21):11086���11099. https://doi.org/10.1093/nar/gks871
[DOI: 10.1093/nar/gks871]
Lustig AJ, Petes TD (1986) Identification of yeast mutants with altered telomere structure. Proc Natl Acad Sci U S A 83(5):1398���1402. https://doi.org/10.1073/pnas.83.5.1398
[DOI: 10.1073/pnas.83.5.1398]
Lynham J, Houry WA (2022) The role of Hsp90-R2TP in macromolecular complex assembly and stabilization. Biomolecules 12(8). https://doi.org/10.3390/biom12081045
Martin J, Masri J, Bernath A, Nishimura RN, Gera J (2008) Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun 372(4):578���583. https://doi.org/10.1016/j.bbrc.2008.05.086
[DOI: 10.1016/j.bbrc.2008.05.086]
Martino F, Pal M, Munoz-Hernandez H, Rodriguez CF, Nunez-Ramirez R, Gil-Carton D, Degliesposti G, Skehel JM, Roe SM, Prodromou C, Pearl LH, Llorca O (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9(1):1501. https://doi.org/10.1038/s41467-018-03942-1
[DOI: 10.1038/s41467-018-03942-1]
Matias PM, Gorynia S, Donner P, Carrondo MA (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281(50):38918���38929. https://doi.org/10.1074/jbc.M605625200
[DOI: 10.1074/jbc.M605625200]
Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, ACF P, Bragantini B, Chagot ME, Robert MC, Abeza C, Fabre P, Fort P, Vandermoere F, PMF S, Rain JC, Charpentier B, Cianferani S, Bandeiras TM, Pradet-Balade B, Manival X, Bertrand E (2018) The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 9(1):2093. https://doi.org/10.1038/s41467-018-04431-1
[DOI: 10.1038/s41467-018-04431-1]
Morgan RM, Pal M, Roe SM, Pearl LH, Prodromou C (2015) Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes. Acta Crystallogr D Biol Crystallogr 71(Pt 5):1197���1206. https://doi.org/10.1107/S1399004715004551
[DOI: 10.1107/S1399004715004551]
Munoz-Hernandez H, Pal M, Rodriguez CF, Fernandez-Leiro R, Prodromou C, Pearl LH, Llorca O (2019) Structural mechanism for regulation of the AAA-ATPases RUVBL1-RUVBL2 in the R2TP co-chaperone revealed by cryo-EM. Sci Adv 5(5):eaaw1616. https://doi.org/10.1126/sciadv.aaw1616
[DOI: 10.1126/sciadv.aaw1616]
Nano N, Ugwu F, Seraphim TV, Li T, Azer G, Isaac M, Prakesch M, Barbosa LRS, Ramos CHI, Datti A, Houry WA (2020) Sorafenib as an inhibitor of RUVBL2. Biomolecules 10(4). https://doi.org/10.3390/biom10040605
Napolitano G, Di Malta C, Ballabio A (2022) Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 32(11):920���931. https://doi.org/10.1016/j.tcb.2022.04.012
[DOI: 10.1016/j.tcb.2022.04.012]
Pal M, Morgan M, Phelps SE, Roe SM, Parry-Morris S, Downs JA, Polier S, Pearl LH, Prodromou C (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22(6):805���818. https://doi.org/10.1016/j.str.2014.04.001
[DOI: 10.1016/j.str.2014.04.001]
Pal M, Munoz-Hernandez H, Bjorklund D, Zhou L, Degliesposti G, Skehel JM, Hesketh EL, Thompson RF, Pearl LH, Llorca O, Prodromou C (2021) Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. Cell Rep 36(1):109317. https://doi.org/10.1016/j.celrep.2021.109317
[DOI: 10.1016/j.celrep.2021.109317]
Rivera-Calzada A, Pal M, Munoz-Hernandez H, Luque-Ortega JR, Gil-Carton D, Degliesposti G, Skehel JM, Prodromou C, Pearl LH, Llorca O (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25(7):1145���1152. e1144. https://doi.org/10.1016/j.str.2017.05.016
[DOI: 10.1016/j.str.2017.05.016]
Rodriguez CF, Llorca O (2020) RPAP3 C-terminal domain: a conserved domain for the assembly of R2TP co-chaperone complexes. Cells 9(5). https://doi.org/10.3390/cells9051139
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101(37):13489���13494. https://doi.org/10.1073/pnas.0405659101
[DOI: 10.1073/pnas.0405659101]
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496���1501. https://doi.org/10.1126/science.1157535
[DOI: 10.1126/science.1157535]
Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960���976. https://doi.org/10.1016/j.cell.2017.02.004
[DOI: 10.1016/j.cell.2017.02.004]
Scaiola A, Mangia F, Imseng S, Boehringer D, Berneiser K, Shimobayashi M, Stuttfeld E, Hall MN, Ban N, Maier T (2020) The 3.2-A resolution structure of human mTORC2. Sci Adv 6(45). https://doi.org/10.1126/sciadv.abc1251
Schmidt A, Kunz J, Hall MN (1996) TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci U S A 93(24):13780���13785. https://doi.org/10.1073/pnas.93.24.13780
[DOI: 10.1073/pnas.93.24.13780]
Serna M, Gonzalez-Corpas A, Cabezudo S, Lopez-Perrote A, Degliesposti G, Zarzuela E, Skehel JM, Munoz J, Llorca O (2022) CryoEM of RUVBL1-RUVBL2-ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Res 50(2):1128���1146. https://doi.org/10.1093/nar/gkab1267
[DOI: 10.1093/nar/gkab1267]
Shevchenko A, Roguev A, Schaft D, Buchanan L, Habermann B, Sakalar C, Thomas H, Krogan NJ, Shevchenko A, Stewart AF (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9(11):R167. https://doi.org/10.1186/gb-2008-9-11-r167
[DOI: 10.1186/gb-2008-9-11-r167]
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S (2020) Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. Sci Adv 6(31):eaay9131. https://doi.org/10.1126/sciadv.aay9131
[DOI: 10.1126/sciadv.aay9131]
Silva STN, Brito JA, Arranz R, Sorzano COS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM (2018) X-ray structure of full-length human RuvB-Like 2 ��� mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 8(1):13726. https://doi.org/10.1038/s41598-018-31997-z
[DOI: 10.1038/s41598-018-31997-z]
Silva-Martin N, Dauden MI, Glatt S, Hoffmann NA, Kastritis P, Bork P, Beck M, Muller CW (2016) The combination of X-ray crystallography and cryo-electron microscopy provides insight into the overall architecture of the dodecameric Rvb1/Rvb2 complex. PLoS One 11(1):e0146457. https://doi.org/10.1371/journal.pone.0146457
[DOI: 10.1371/journal.pone.0146457]
Takai H, Wang RC, Takai KK, Yang H, de Lange T (2007) Tel2 regulates the stability of PI3K-related protein kinases. Cell 131(7):1248���1259. https://doi.org/10.1016/j.cell.2007.10.052
[DOI: 10.1016/j.cell.2007.10.052]
Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24(18):2019���2030. https://doi.org/10.1101/gad.1956410
[DOI: 10.1101/gad.1956410]
Tang HW, Weng JH, Lee WX, Hu Y, Gu L, Cho S, Lee G, Binari R, Li C, Cheng ME, Kim AR, Xu J, Shen Z, Xu C, Asara JM, Blenis J, Perrimon N (2021) mTORC1-chaperonin CCT signaling regulates m(6)A RNA methylation to suppress autophagy. Proc Natl Acad Sci U S A 118(10). https://doi.org/10.1073/pnas.2021945118
Toullec D, Elias-Villalobos A, Faux C, Noly A, Lledo G, Seveno M, Helmlinger D (2021) The Hsp90 cochaperone TTT promotes cotranslational maturation of PIKKs prior to complex assembly. Cell Rep 37(3):109867. https://doi.org/10.1016/j.celrep.2021.109867
[DOI: 10.1016/j.celrep.2021.109867]
Vaughan CK (2014) Hsp90 picks PIKKs via R2TP and Tel2. Structure 22(6):799���800. https://doi.org/10.1016/j.str.2014.05.012
[DOI: 10.1016/j.str.2014.05.012]
Wang JZ, Zhu H, You P, Liu H, Wang WK, Fan X, Yang Y, Xu K, Zhu Y, Li Q, Wu P, Peng C, Wong CC, Li K, Shi Y, Zhang N, Wang X, Zeng R, Huang Y, Yang L, Wang Z, Hui J (2022) Upregulated YB-1 protein promotes glioblastoma growth through a YB-1/CCT4/mLST8/mTOR pathway. J Clin Invest 132(8). https://doi.org/10.1172/JCI146536
Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497(7448):217���223. https://doi.org/10.1038/nature12122
[DOI: 10.1038/nature12122]
Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5(10):781���791. https://doi.org/10.1038/nrm1492
[DOI: 10.1038/nrm1492]
Yu Z, Chen J, Takagi E, Wang F, Saha B, Liu X, Joubert LM, Gleason CE, Jin M, Li C, Nowotny C, Agard D, Cheng Y, Pearce D (2022) Interactions between mTORC2 core subunits Rictor and mSin1 dictate selective and context-dependent phosphorylation of substrate kinases SGK1 and Akt. J Biol Chem 298(9):102288. https://doi.org/10.1016/j.jbc.2022.102288
[DOI: 10.1016/j.jbc.2022.102288]
Zhang Y, Liu Y, Duan J, Yan H, Zhang J, Zhang H, Fan Q, Luo F, Yan G, Qiao K, Liu J (2016) Hippocalcin-like 1 suppresses hepatocellular carcinoma progression by promoting p21(Waf/Cip1) stabilization by activating the ERK1/2-MAPK pathway. Hepatology 63(3):880���897. https://doi.org/10.1002/hep.28395
[DOI: 10.1002/hep.28395]
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715���727. https://doi.org/10.1016/j.cell.2004.12.024
[DOI: 10.1016/j.cell.2004.12.024]
Zhao R, Houry WA (2007) Molecular interaction network of the Hsp90 chaperone system. Adv Exp Med Biol 594:27���36. https://doi.org/10.1007/978-0-387-39975-1_3
[DOI: 10.1007/978-0-387-39975-1_3]
Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21���35. https://doi.org/10.1038/nrm3025
[DOI: 10.1038/nrm3025]