Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy.

Xiao-Ting Yin, En-Ming You, Ru-Yu Zhou, Li-Hong Zhu, Wei-Wei Wang, Kai-Xuan Li, De-Yin Wu, Yu Gu, Jian-Feng Li, Bing-Wei Mao, Jia-Wei Yan
Author Information
  1. Xiao-Ting Yin: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  2. En-Ming You: School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, China.
  3. Ru-Yu Zhou: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  4. Li-Hong Zhu: Department of Electronic Science, Xiamen University, Xiamen, China.
  5. Wei-Wei Wang: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  6. Kai-Xuan Li: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  7. De-Yin Wu: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. ORCID
  8. Yu Gu: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. ygu@xmu.edu.cm. ORCID
  9. Jian-Feng Li: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. li@xmu.edu.cn. ORCID
  10. Bing-Wei Mao: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
  11. Jia-Wei Yan: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. jwyan@xmu.edu.cn. ORCID

Abstract

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

References

  1. Nature. 2010 Mar 18;464(7287):392-5 [PMID: 20237566]
  2. Phys Chem Chem Phys. 2021 Oct 6;23(38):21419-21436 [PMID: 34550122]
  3. Nat Commun. 2018 Dec 4;9(1):5222 [PMID: 30514881]
  4. Sci Rep. 2013;3:1595 [PMID: 23549208]
  5. Phys Rev Lett. 2006 Nov 3;97(18):187401 [PMID: 17155573]
  6. Nat Commun. 2021 Jun 30;12(1):4053 [PMID: 34193848]
  7. J Am Chem Soc. 2008 Mar 5;130(9):2730-1 [PMID: 18257568]
  8. J Am Chem Soc. 2016 May 11;138(18):5731-44 [PMID: 27031622]
  9. J Am Chem Soc. 2011 Aug 24;133(33):13121-9 [PMID: 21774493]
  10. Nat Commun. 2023 Jun 15;14(1):3536 [PMID: 37321993]
  11. Nanoscale. 2018 Feb 1;10(5):2398-2403 [PMID: 29334114]
  12. Science. 2004 Oct 22;306(5696):666-9 [PMID: 15499015]
  13. Nature. 2012 Oct 11;490(7419):192-200 [PMID: 23060189]
  14. Nano Lett. 2009 Dec;9(12):4359-63 [PMID: 19845330]
  15. Nat Nanotechnol. 2013 Apr;8(4):235-46 [PMID: 23552117]
  16. J Am Chem Soc. 2013 Aug 28;135(34):12818-26 [PMID: 23915377]
  17. Nat Mater. 2012 Mar 04;11(4):306-10 [PMID: 22388172]
  18. Science. 2006 Sep 22;313(5794):1760-3 [PMID: 16917025]
  19. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 [PMID: 16027370]
  20. J Am Chem Soc. 2014 Apr 2;136(13):5039-46 [PMID: 24654781]
  21. J Am Chem Soc. 2014 Oct 22;136(42):14682-5 [PMID: 25291430]
  22. Chem Soc Rev. 2008 May;37(5):1025-41 [PMID: 18443687]
  23. Nat Nanotechnol. 2008 Apr;3(4):210-5 [PMID: 18654505]
  24. Nat Commun. 2013;4:2701 [PMID: 24165568]
  25. Chem Soc Rev. 2015 Jun 7;44(11):3639-65 [PMID: 25898904]
  26. Nanoscale Horiz. 2016 Jan 18;1(1):45-52 [PMID: 32260601]
  27. J Am Chem Soc. 2019 Oct 23;141(42):16559-16563 [PMID: 31588740]
  28. Angew Chem Int Ed Engl. 2021 Oct 11;60(42):22683-22687 [PMID: 34399018]
  29. Nat Nanotechnol. 2020 Aug;15(8):683-689 [PMID: 32572227]
  30. Nat Mater. 2007 Mar;6(3):183-91 [PMID: 17330084]
  31. J Phys Chem B. 2018 Jan 11;122(1):275-289 [PMID: 29200299]
  32. Nano Lett. 2008 Oct;8(10):3498-502 [PMID: 18788793]
  33. Adv Mater. 2015 Sep 23;27(36):5296-308 [PMID: 26293692]
  34. Adv Mater. 2023 Aug;35(33):e2301118 [PMID: 37120155]
  35. Nat Nanotechnol. 2009 Aug;4(8):505-9 [PMID: 19662012]
  36. Phys Chem Chem Phys. 2015 Feb 14;17(6):4656-63 [PMID: 25587829]
  37. Nano Lett. 2010 Sep 8;10(9):3386-8 [PMID: 20677788]
  38. ACS Nano. 2016 Apr 26;10(4):4248-57 [PMID: 26943950]
  39. Phys Chem Chem Phys. 2015 Jan 7;17(1):325-33 [PMID: 25372300]
  40. Chem Commun (Camb). 2012 Jan 14;48(4):582-4 [PMID: 22109542]
  41. Nano Lett. 2010 Feb 10;10(2):553-61 [PMID: 20039694]
  42. Angew Chem Int Ed Engl. 2008;47(18):3392-5 [PMID: 18366034]
  43. Nat Mater. 2015 Aug;14(8):812-9 [PMID: 26099110]
  44. J Phys Chem B. 2012 Sep 13;116(36):11323-31 [PMID: 22897246]
  45. Nature. 2021 Dec;600(7887):81-85 [PMID: 34853456]
  46. Science. 2009 Jun 5;324(5932):1312-4 [PMID: 19423775]

Word Cloud

Created with Highcharts 10.0.0grapheneelectrochemicalcapacitorsmechanismionnumberlayersnonaqueousunderstandingcharginggraphene/electrolyteinterfacegap-enhancedRamanstrategybasedpotential-dependentcapacitancepropertiesGrapheneextensivelyutilizedelectrodematerialHowevercomprehensivearrangementremainelusiveHereinspectroscopicdesignedcharacterizedynamicinterfacialprocessadjustablesynergisticenhancementlocalizedsurfaceplasmonsshell-isolatednanoparticlesmetalsubstrateemployingcombinedcomplementarycharacterizationtechniquesstudyconfigurationadsorbedionscurvesincreasestransformmetalloidnaturegraphite-likebehaviorshiftsco-iondesorptionsingle-layerexchangedominationfew-layerincreaseareaspecific64145µFcmattributedinfluencepackingtherebyimpactingperformanceFurthermorecoordinationstructurelithiumbisfluorosulfonylimidetetraglyme[LiG4][FSI]revealedworkaddsinterfacesdistinctofferinginsightsoptimizationUnravelingenergystoragegraphene-basedspectroscopy

Similar Articles

Cited By