Identification of the anthracnose pathogen and the antifungal potential of the cell-free supernatant of against .

Chun Fu, Shushan Wan, Peng Yang, Xizhu Zhao, Yueyao Yan, Shijiao Jiang, Habib Ali
Author Information
  1. Chun Fu: Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China.
  2. Shushan Wan: Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Science, China West Normal University, Nanchong, China.
  3. Peng Yang: Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Science, China West Normal University, Nanchong, China.
  4. Xizhu Zhao: Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Science, China West Normal University, Nanchong, China.
  5. Yueyao Yan: Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Science, China West Normal University, Nanchong, China.
  6. Shijiao Jiang: Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Science, China West Normal University, Nanchong, China.
  7. Habib Ali: Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

Abstract

Introduction: Anthracnose is a significant fungal disease that affects tree growth and development, with Colletotrichum spp. exhibiting host non-specificity and targeting various organs, making disease control challenging.
Methods: This study aimed to identify the pathogenic species causing anthracnose in in Nanchong, Sichuan Province, and screen effective fungicides, particularly biological ones. The pathogen was identified as through morphological observation, pathogenicity assays, and molecular biological methods. Three biological and five chemical fungicides were evaluated for their effects on the mycelial growth and spore germination rate of the pathogen.
Results: The results indicated that prochloraz was the most effective chemical fungicide, while the cell-free supernatant (CFS) of had the most significant inhibitory effect among the biological fungicides. Transcriptome analysis revealed that the CFS of significantly reduced the expression of genes associated with ribosomes, genetic information processing, membrane lipid metabolism, and sphingolipid biosynthesis in . Additionally, the glutathione pathway's expression of various genes, including key genes such as GST, GFA, Grx, TRR, and POD, was induced. Furthermore, the expression of 17 MFS transporters and 9 ABC transporters was increased. Autophagy-related ATGs were also affected by the CFS.
Discussion: These findings suggest that the CFS may inhibit through interference with ribosomes, genetic information processing, cell membrane metabolism, and energy metabolism. These results provide potential target genes for the CFS and insights into the antifungal mechanism by which inhibits .

Keywords

References

  1. Front Physiol. 2021 Mar 18;12:637852 [PMID: 33815143]
  2. Nanomaterials (Basel). 2022 Dec 16;12(24): [PMID: 36558323]
  3. Front Microbiol. 2022 Aug 05;13:980022 [PMID: 35992680]
  4. Appl Microbiol Biotechnol. 2023 Dec;107(23):7213-7230 [PMID: 37733053]
  5. Int J Mol Sci. 2022 Aug 14;23(16): [PMID: 36012387]
  6. J Microbiol. 2022 May;60(5):496-510 [PMID: 35362894]
  7. Front Plant Sci. 2022 Jul 22;13:953760 [PMID: 35937340]
  8. Plant Dis. 2020 Sep;104(9):2301-2316 [PMID: 32689886]
  9. J Agric Food Chem. 2020 Jul 22;68(29):7555-7570 [PMID: 32559375]
  10. Plant Cell Environ. 2021 Jan;44(1):1-16 [PMID: 33034375]
  11. Trends Pharmacol Sci. 2022 Jan;43(1):69-79 [PMID: 34756759]
  12. Front Microbiol. 2023 Jul 25;14:1194606 [PMID: 37560520]
  13. Cell Mol Life Sci. 2022 Jun 1;79(6):333 [PMID: 35648225]
  14. Mol Cell. 2021 Jan 21;81(2):355-369.e10 [PMID: 33321093]
  15. Mol Plant Pathol. 2021 Oct;22(10):1302-1314 [PMID: 34275185]
  16. Plant Dis. 2020 Mar;104(3):958-966 [PMID: 31944880]
  17. Int J Mol Sci. 2022 Mar 02;23(5): [PMID: 35269898]
  18. Expert Rev Proteomics. 2021 Mar;18(3):185-199 [PMID: 33797307]
  19. Curr Microbiol. 2022 Oct 17;79(12):357 [PMID: 36251101]
  20. J Fungi (Basel). 2022 May 25;8(6): [PMID: 35736048]
  21. J Fungi (Basel). 2021 Dec 06;7(12): [PMID: 34947027]
  22. Front Microbiol. 2022 Apr 14;13:860694 [PMID: 35495690]
  23. Front Microbiol. 2020 Apr 30;11:701 [PMID: 32425904]
  24. RSC Med Chem. 2021 Jul 29;12(10):1698-1708 [PMID: 34778771]
  25. Int J Mol Sci. 2022 Sep 13;23(18): [PMID: 36142553]
  26. Stud Mycol. 2012 Sep 15;73(1):115-80 [PMID: 23136459]
  27. Mol Plant. 2022 Aug 1;15(8):1347-1366 [PMID: 35799449]
  28. Microb Ecol. 2023 Jul;86(1):1-24 [PMID: 35604432]
  29. Front Fungal Biol. 2022 Mar 23;3:837605 [PMID: 37746164]
  30. Plant Dis. 2021 Feb;105(2):408-415 [PMID: 32729798]
  31. Front Microbiol. 2020 Mar 17;11:296 [PMID: 32256459]
  32. Front Microbiol. 2023 Jan 18;13:1019800 [PMID: 36741881]

Word Cloud

Created with Highcharts 10.0.0CFSbiologicalgenesanthracnosefungicidespathogenexpressionmetabolismsignificantdiseasegrowthColletotrichumvariouseffectivechemicalresultscell-freesupernatantribosomesgeneticinformationprocessingmembranetransporterspotentialantifungalIntroduction:Anthracnosefungalaffectstreedevelopmentsppexhibitinghostnon-specificitytargetingorgansmakingcontrolchallengingMethods:studyaimedidentifypathogenicspeciescausingNanchongSichuanProvincescreenparticularlyonesidentifiedmorphologicalobservationpathogenicityassaysmolecularmethodsThreefiveevaluatedeffectsmycelialsporegerminationrateResults:indicatedprochlorazfungicideinhibitoryeffectamongTranscriptomeanalysisrevealedsignificantlyreducedassociatedlipidsphingolipidbiosynthesisAdditionallyglutathionepathway'sincludingkeyGSTGFAGrxTRRPODinducedFurthermore17MFS9ABCincreasedAutophagy-relatedATGsalsoaffectedDiscussion:findingssuggestmayinhibitinterferencecellenergyprovidetargetinsightsmechanisminhibitsIdentificationBacillusvelezensisfioriniaeIlexmacrocarpabiocontrol

Similar Articles

Cited By (1)