High-throughput combination assay for studying biofilm formation of uropathogenic Escherichia coli.

M Li, C D Cruz, P Ilina, P Tammela
Author Information
  1. M Li: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland. ORCID
  2. C D Cruz: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland. ORCID
  3. P Ilina: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland. ORCID
  4. P Tammela: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland. paivi.tammela@helsinki.fi. ORCID

Abstract

Uropathogenic Escherichia coli, the most common cause for urinary tract infections, forms biofilm enhancing its antibiotic resistance. To assess the effects of compounds on biofilm formation of uropathogenic Escherichia coli UMN026 strain, a high-throughput combination assay using resazurin followed by crystal violet staining was optimized for 384-well microplate. Optimized assay parameters included, for example, resazurin and crystal violet concentrations, and incubation time for readouts. For the assay validation, quality parameters Z' factor, coefficient of variation, signal-to-noise, and signal-to-background were calculated. Microplate uniformity, signal variability, edge well effects, and fold shift were also assessed. Finally, a screening with known antibacterial compounds was conducted to evaluate the assay performance. The best conditions found were achieved by using 12 µg/mL resazurin for 150 min and 0.023% crystal violet. This assay was able to detect compounds displaying antibiofilm activity against UMN026 strain at sub-inhibitory concentrations, in terms of metabolic activity and/or biomass.

Keywords

References

  1. J Biomol Screen. 1999;4(2):67-73 [PMID: 10838414]
  2. Microb Pathog. 2020 Jul;144:104196 [PMID: 32283258]
  3. Microbiology (Reading). 2002 Jul;148(Pt 7):2215-2222 [PMID: 12101308]
  4. Microbes Infect. 1999 Feb;1(2):125-9 [PMID: 10594976]
  5. Biofouling. 2013;29(5):491-9 [PMID: 23668380]
  6. Saudi J Biol Sci. 2021 Jan;28(1):333-341 [PMID: 33424314]
  7. Appl Environ Microbiol. 2012 May;78(9):3369-78 [PMID: 22389366]
  8. Trends Microbiol. 2020 Aug;28(8):668-681 [PMID: 32663461]
  9. Front Microbiol. 2022 Aug 04;13:951291 [PMID: 35992661]
  10. Pathog Glob Health. 2015 Feb;109(1):26-9 [PMID: 25605466]
  11. Molecules. 2022 Mar 31;27(7): [PMID: 35408683]
  12. Nat Rev Microbiol. 2015 May;13(5):269-84 [PMID: 25853778]
  13. Biofilm. 2022 Aug 17;4:100081 [PMID: 36060119]
  14. J Microbiol Methods. 2008 Feb;72(2):157-65 [PMID: 18155789]
  15. J Microbiol Methods. 2021 Nov;190:106343 [PMID: 34619138]
  16. Antibiotics (Basel). 2022 Sep 09;11(9): [PMID: 36140002]
  17. J Appl Microbiol. 2010 Aug;109(2):515-527 [PMID: 20163489]
  18. J Antibiot (Tokyo). 2012 Sep;65(9):453-9 [PMID: 22739537]
  19. Antimicrob Agents Chemother. 2009 Jun;53(6):2283-8 [PMID: 19364861]
  20. J Oral Microbiol. 2022 Mar 29;14(1):2055523 [PMID: 35368854]
  21. Pathogens. 2016 Nov 30;5(4): [PMID: 27916925]
  22. Arch Microbiol. 2021 Jan;203(1):251-260 [PMID: 32918098]
  23. Front Microbiol. 2017 Mar 02;8:326 [PMID: 28303128]
  24. Trends Microbiol. 2005 Jan;13(1):20-6 [PMID: 15639628]
  25. Nucleic Acids Res. 2023 Jan 6;51(D1):D957-D963 [PMID: 36318257]
  26. Clin Microbiol Rev. 2019 Oct 16;33(1): [PMID: 31619395]
  27. J Biomol Screen. 2006 Apr;11(3):247-52 [PMID: 16490779]
  28. Int J Mol Sci. 2020 Apr 25;21(9): [PMID: 32344836]
  29. Dis Mon. 2003 Feb;49(2):53-70 [PMID: 12601337]
  30. Antimicrob Resist Infect Control. 2018 Oct 3;7:118 [PMID: 30305891]
  31. Trends Microbiol. 2005 Jan;13(1):34-40 [PMID: 15639630]
  32. BMC Complement Med Ther. 2021 Apr 9;21(1):116 [PMID: 33836728]
  33. mBio. 2018 Mar 6;9(2): [PMID: 29511075]
  34. Appl Environ Microbiol. 2008 Jan;74(2):470-6 [PMID: 18039822]
  35. Pol J Microbiol. 2019 Dec;68(4):403-415 [PMID: 31880885]
  36. J Antimicrob Chemother. 1988 Dec;22(6):777-80 [PMID: 3072331]
  37. Int J Mol Sci. 2017 Sep 30;18(10): [PMID: 28973965]
  38. Nat Chem Biol. 2007 Aug;3(8):466-79 [PMID: 17637779]
  39. Bioorg Chem. 2021 Jun;111:104894 [PMID: 33865054]
  40. Appl Microbiol Biotechnol. 2018 Feb;102(4):1837-1846 [PMID: 29327068]
  41. Antimicrob Agents Chemother. 1985 Apr;27(4):619-24 [PMID: 3923925]

MeSH Term

Biofilms
Uropathogenic Escherichia coli
High-Throughput Screening Assays
Xanthenes
Anti-Bacterial Agents
Gentian Violet
Oxazines
Microbial Sensitivity Tests
Urinary Tract Infections
Humans

Chemicals

Xanthenes
resazurin
Anti-Bacterial Agents
Gentian Violet
Oxazines

Word Cloud

Created with Highcharts 10.0.0assayvioletEscherichiacolibiofilmcompoundsresazurincrystaleffectsformationuropathogenicUMN026straincombinationusingparametersconcentrationsactivityUropathogeniccommoncauseurinarytractinfectionsformsenhancingantibioticresistanceassesshigh-throughputfollowedstainingoptimized384-wellmicroplateOptimizedincludedexampleincubationtimereadoutsvalidationqualityZ'factorcoefficientvariationsignal-to-noisesignal-to-backgroundcalculatedMicroplateuniformitysignalvariabilityedgewellfoldshiftalsoassessedFinallyscreeningknownantibacterialconductedevaluateperformancebestconditionsfoundachieved12 µg/mL150 min0023%abledetectdisplayingantibiofilmsub-inhibitorytermsmetabolicand/orbiomassHigh-throughputstudyingAssayoptimizationBiofilmCrystalResazurinScreeningUPEC

Similar Articles

Cited By