Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase.

Saishu Yoshida, Akira Kawamura, Katsuhiko Aoki, Pattama Wiriyasermkul, Shinya Sugimoto, Junnosuke Tomiyoshi, Ayasa Tajima, Yamato Ishida, Yohei Katoh, Takehiro Tsukada, Yousuke Tsuneoka, Kohji Yamada, Shushi Nagamori, Kazuhisa Nakayama, Kiyotsugu Yoshida
Author Information
  1. Saishu Yoshida: Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  2. Akira Kawamura: Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  3. Katsuhiko Aoki: Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  4. Pattama Wiriyasermkul: Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  5. Shinya Sugimoto: Department of Bacteriology, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  6. Junnosuke Tomiyoshi: Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  7. Ayasa Tajima: Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  8. Yamato Ishida: Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
  9. Yohei Katoh: Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. ORCID
  10. Takehiro Tsukada: Department of Biomolecular Science, Toho University, Chiba 274-8510, Japan. ORCID
  11. Yousuke Tsuneoka: Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan. ORCID
  12. Kohji Yamada: Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID
  13. Shushi Nagamori: Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
  14. Kazuhisa Nakayama: Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. ORCID
  15. Kiyotsugu Yoshida: Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan. ORCID

Abstract

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8541-6 [PMID: 24853502]
  2. Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2563-79 [PMID: 24311597]
  3. Mol Cell Biol. 2006 Jun;26(11):4316-26 [PMID: 16705181]
  4. PLoS Biol. 2015 Apr 10;13(4):e1002129 [PMID: 25860027]
  5. Trends Cell Biol. 2023 Nov;33(11):979-990 [PMID: 37302961]
  6. Nat Commun. 2013;4:2608 [PMID: 24217340]
  7. Front Mol Neurosci. 2020 May 12;13:75 [PMID: 32477063]
  8. Development. 2005 Oct;132(19):4407-17 [PMID: 16155214]
  9. Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2202730119 [PMID: 36044553]
  10. J Biol Chem. 2020 Sep 18;295(38):13363-13376 [PMID: 32732286]
  11. Mol Biol Cell. 2013 Mar;24(5):588-600 [PMID: 23283985]
  12. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22671-6 [PMID: 21148103]
  13. PLoS One. 2021 Oct 8;16(10):e0258497 [PMID: 34624068]
  14. Development. 2011 Nov;138(22):4921-30 [PMID: 22007132]
  15. Cell Signal. 2023 Jul;107:110666 [PMID: 37019250]
  16. Dev Cell. 2019 Sep 9;50(5):610-626.e4 [PMID: 31279575]
  17. Cell Commun Signal. 2020 Jun 23;18(1):99 [PMID: 32576205]
  18. Cell. 2008 May 2;133(3):537-48 [PMID: 18455992]
  19. Science. 1997 Aug 22;277(5329):1109-13 [PMID: 9262482]
  20. Cell. 2013 Jan 17;152(1-2):210-23 [PMID: 23332756]
  21. Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2320070121 [PMID: 38968120]
  22. Semin Cell Dev Biol. 2008 Dec;19(6):494-501 [PMID: 18692148]
  23. Genes Dev. 2009 Aug 15;23(16):1910-28 [PMID: 19684112]
  24. J Cell Biol. 2010 Oct 18;191(2):415-28 [PMID: 20956384]
  25. Dev Growth Differ. 2014 Jun;56(5):410-24 [PMID: 24860986]
  26. J Clin Invest. 2012 Mar;122(3):859-72 [PMID: 22307329]
  27. Mol Cell Endocrinol. 2020 May 1;507:110780 [PMID: 32142860]
  28. Life Sci Alliance. 2022 Jul 13;5(11): [PMID: 35831023]
  29. Int J Mol Sci. 2020 Sep 11;21(18): [PMID: 32933018]
  30. Cell. 2001 Jul 27;106(2):781-92 [PMID: 11517919]
  31. Development. 2009 Dec;136(24):4177-85 [PMID: 19906844]
  32. Mol Cell Biol. 2010 Apr;30(8):1910-22 [PMID: 20154143]
  33. Dev Cell. 2014 Nov 10;31(3):279-290 [PMID: 25446516]
  34. EMBO J. 2014 Jun 2;33(11):1227-42 [PMID: 24797473]
  35. Cell. 2000 Feb 18;100(4):423-34 [PMID: 10693759]
  36. Dev Cell. 2006 Feb;10(2):187-97 [PMID: 16459298]
  37. FEBS Lett. 2002 Jan 2;510(1-2):31-6 [PMID: 11755526]
  38. Annu Rev Cell Dev Biol. 2011;27:513-37 [PMID: 21801010]
  39. J Dev Biol. 2017 Nov 21;5(4): [PMID: 29615569]
  40. Nat Cell Biol. 2009 Apr;11(4):409-19 [PMID: 19287380]
  41. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21516-21 [PMID: 23236174]
  42. Cell Mol Life Sci. 2020 Jul;77(13):2621-2639 [PMID: 31605148]
  43. J Biol Chem. 2000 Jan 28;275(4):2431-8 [PMID: 10644696]
  44. Methods Mol Biol. 2019;2012:299-313 [PMID: 31161514]
  45. Development. 2001 Dec;128(24):5099-108 [PMID: 11748145]
  46. Cell Commun Signal. 2020 Apr 3;18(1):54 [PMID: 32245491]
  47. PLoS Genet. 2005 Oct;1(4):e53 [PMID: 16254602]
  48. Elife. 2020 Aug 06;9: [PMID: 32758357]
  49. Genes Dev. 2010 Apr 1;24(7):670-82 [PMID: 20360384]
  50. EMBO J. 2012 May 18;31(14):3104-17 [PMID: 22609948]
  51. Methods Mol Biol. 2015;1322:81-92 [PMID: 26179041]
  52. Science. 2007 Jul 20;317(5836):372-6 [PMID: 17641202]
  53. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21666-71 [PMID: 19996169]
  54. PLoS Genet. 2017 Aug 17;13(8):e1006912 [PMID: 28817564]
  55. Development. 2010 Jun;137(12):2001-9 [PMID: 20463034]
  56. Nature. 2003 Nov 6;426(6962):83-7 [PMID: 14603322]
  57. Cell Rep. 2014 Jan 16;6(1):168-181 [PMID: 24373970]
  58. Genes Dev. 1999 Aug 15;13(16):2072-86 [PMID: 10465785]
  59. Nat Commun. 2016 Apr 04;7:11151 [PMID: 27039827]
  60. Fish Physiol Biochem. 2023 Aug;49(4):751-767 [PMID: 37464181]
  61. Dev Cell. 2020 Sep 28;54(6):710-726.e8 [PMID: 32702291]
  62. Nat Rev Mol Cell Biol. 2017 Sep;18(9):533-547 [PMID: 28698599]
  63. Genes Dev. 2001 Dec 1;15(23):3059-87 [PMID: 11731473]
  64. Development. 1997 Jan;124(1):113-23 [PMID: 9006072]
  65. Bone Res. 2018 Jun 14;6:19 [PMID: 29928541]
  66. Cells. 2019 Feb 11;8(2): [PMID: 30754706]

Grants

  1. 21K0619/MEXT | Japan Society for the Promotion of Science (JSPS)
  2. 17H03584/MEXT | Japan Society for the Promotion of Science (JSPS)
  3. 18K19484/MEXT | Japan Society for the Promotion of Science (JSPS)
  4. 20H03519/MEXT | Japan Society for the Promotion of Science (JSPS)
  5. 23K18244/MEXT | Japan Society for the Promotion of Science (JSPS)
  6. the Jikei University Research Fund/Jikei University School of Medicine (Jikei University)
  7. the Jikei University Research Fund/Jikei University School of Medicine (Jikei University)
  8. 2019/Takeda Science Foundation (TSF)
  9. 2023/Yamaguchi Endocrine Research Foundation
  10. Nakatani Foundation/Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering (Nakatani Foundation)
  11. 2020/Uehara Memorial Foundation (UMF)
  12. 2021/Uehara Memorial Foundation (UMF)

MeSH Term

Animals
Zinc Finger Protein Gli3
Zinc Finger Protein Gli2
Phosphorylation
Protein Serine-Threonine Kinases
Dyrk Kinases
Hedgehog Proteins
Signal Transduction
Mice
Protein-Tyrosine Kinases
Humans
Nerve Tissue Proteins
Kruppel-Like Transcription Factors
Cell Proliferation
Cilia
Smoothened Receptor
Nuclear Proteins
Repressor Proteins

Chemicals

Zinc Finger Protein Gli3
Zinc Finger Protein Gli2
Protein Serine-Threonine Kinases
Dyrk Kinases
Hedgehog Proteins
Protein-Tyrosine Kinases
Gli3 protein, mouse
Gli2 protein, mouse
Nerve Tissue Proteins
Sufu protein, mouse
Kruppel-Like Transcription Factors
GLI2 protein, human
Smoothened Receptor
SUFU protein, human
Nuclear Proteins
Repressor Proteins

Word Cloud

Created with Highcharts 10.0.0signalingHhGLI2GLI3DYRK2phosphorylationHedgehogdevelopmentactivationciliarykinaseevolutionarilyconservedpathwaySMOdownstreamremainsGLI2/GLI3regulationciliaplaysessentialroletumorigenesismakingpromisingdrugtargetMultiplenegativeregulatorsknowngovernhoweveractivatedSmoothenedparticipatesunclearHereinidentifiedpositiveregulatortranscriptionfactorsTranscriptomeinteractomeanalysesdemonstratedphosphorylatesserineresiduesbaseresponseinducesdissociationsuppressorSUFUtranslocationnucleusLossmicecausesskeletalmalformationneuraltubenormalNotablyDYRK2-mediatedorchestrateslimbcontrollingcellproliferationTakentogethergovernstwoprocesses:formationThusfindingsuniqueregulatorymechanismexpandunderstandingcontrolHh-associateddiseasesPositiveviaprimary

Similar Articles

Cited By