Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone.

Matthias L��hn, Klaus Josef Wirth
Author Information
  1. Matthias L��hn: Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany. loehn@em.uni-frankfurt.de. ORCID
  2. Klaus Josef Wirth: Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany. klaus@mitodicure.com.

Abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified. The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development. TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3's expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.

Keywords

References

  1. Mol Med. 2019 Apr 23;25(1):14 [PMID: 31014226]
  2. Clin Exp Immunol. 2017 Feb;187(2):284-293 [PMID: 27727448]
  3. JAMA Neurol. 2019 Oct 01;76(10):1240-1251 [PMID: 31498378]
  4. J Transl Med. 2021 Nov 22;19(1):471 [PMID: 34809664]
  5. Brain Behav Immun Health. 2024 Feb 01;36:100733 [PMID: 38352659]
  6. J Mol Endocrinol. 2013 Apr 23;50(3):R75-83 [PMID: 23511953]
  7. Nat Commun. 2024 Jan 4;15(1):17 [PMID: 38177128]
  8. Biol Res. 2016 May 31;49(1):27 [PMID: 27245705]
  9. Medicina (Kaunas). 2022 Dec 08;58(12): [PMID: 36557009]
  10. Medicina (Kaunas). 2022 Mar 12;58(3): [PMID: 35334595]
  11. Mol Med. 2018 Aug 14;24(1):44 [PMID: 30134818]
  12. Am Heart J Plus. 2021 May;5:100025 [PMID: 34192289]
  13. J Biol Chem. 2003 Jun 13;278(24):21493-501 [PMID: 12672799]
  14. Front Cell Dev Biol. 2021 Feb 26;9:635659 [PMID: 33732703]
  15. Biochem Pharmacol. 2021 Jan;183:114310 [PMID: 33130130]
  16. Front Physiol. 2022 Sep 23;13:947723 [PMID: 36213251]
  17. Int J Behav Med. 1994;1(4):354-70 [PMID: 16250795]
  18. Neuropharmacology. 2023 Aug 1;233:109530 [PMID: 37037282]
  19. Pharmacotherapy. 2018 Mar;38(3):382-389 [PMID: 29377216]
  20. Immunol Res. 2018 Dec;66(6):744-754 [PMID: 30478703]
  21. J Transl Med. 2021 Jul 15;19(1):306 [PMID: 34266470]
  22. Front Immunol. 2019 Oct 31;10:2545 [PMID: 31736966]
  23. Front Immunol. 2021 Jul 13;12:687806 [PMID: 34326841]
  24. EClinicalMedicine. 2023 Aug 19;63:102146 [PMID: 37662515]
  25. Pflugers Arch. 2018 May;470(5):799-807 [PMID: 29305649]
  26. Muscle Nerve. 2022 Apr;65(4):440-443 [PMID: 34766365]
  27. Chest. 2021 Aug;160(2):642-651 [PMID: 33577778]
  28. Br J Pharmacol. 2019 Oct;176(20):3893-3898 [PMID: 31372975]
  29. Neuron. 2011 May 12;70(3):482-94 [PMID: 21555074]
  30. Am J Med. 2024 Apr 6;: [PMID: 38588934]
  31. Brain Behav Immun Health. 2023 Mar;28:100595 [PMID: 36713476]
  32. J Biol Chem. 2005 Jun 10;280(23):22540-8 [PMID: 15824111]
  33. J Transl Med. 2023 Nov 15;21(1):814 [PMID: 37968647]
  34. Int J Mol Sci. 2024 Jan 30;25(3): [PMID: 38338957]
  35. Front Immunol. 2020 Oct 23;11:590261 [PMID: 33193423]
  36. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1363-72 [PMID: 25733887]
  37. Psychopharmacol Bull. 2020 Oct 15;50(4 Suppl 1):142-162 [PMID: 33633423]
  38. Med Sci (Basel). 2018 Sep 21;6(4): [PMID: 30248938]
  39. Rev Med Virol. 2022 Jul;32(4):e2315 [PMID: 34888989]
  40. Brain Behav Immun Health. 2022 Oct;24:100485 [PMID: 35814187]
  41. Elife. 2023 Jan 17;12: [PMID: 36648066]
  42. Neurol Neuroimmunol Neuroinflamm. 2022 Mar 1;9(3): [PMID: 35232750]
  43. Channels (Austin). 2021 Dec;15(1):386-397 [PMID: 33853504]
  44. Front Immunol. 2022 Sep 27;13:981532 [PMID: 36238301]
  45. Trends Cardiovasc Med. 2022 Aug;32(6):323-330 [PMID: 35461991]
  46. PLoS One. 2014 Aug 04;9(8):e104000 [PMID: 25090642]
  47. J Mol Cell Cardiol. 2019 Apr;129:219-230 [PMID: 30853321]
  48. Mol Med. 2022 Aug 19;28(1):98 [PMID: 35986236]
  49. J Transl Med. 2022 Feb 16;20(1):94 [PMID: 35172836]
  50. Elife. 2020 Apr 28;9: [PMID: 32343227]
  51. J Biol Chem. 2003 Jun 6;278(23):20890-7 [PMID: 12672827]
  52. Signal Transduct Target Ther. 2023 Jul 5;8(1):261 [PMID: 37402746]
  53. Cochrane Database Syst Rev. 2012 Jan 18;1:CD008922 [PMID: 22258993]

MeSH Term

Humans
Fatigue Syndrome, Chronic
TRPM Cation Channels
Naltrexone
Animals
Dose-Response Relationship, Drug
Treatment Outcome

Chemicals

TRPM Cation Channels
Naltrexone
TRPM3 protein, human

Word Cloud

Created with Highcharts 10.0.0ME/CFSTRPM3potentialchannelnaltrexonesyndromeMyalgicEncephalomyelitis/ChronicSyndromePost-COVIDPCSsymptomsvariousinvolvedreleaseNKcellsroledysfunctionmaylow-doseorgansGABAfatigueFatiguedebilitatingdiseasebroadoverlapsymptomatologyDespiteseverityneurologicalcardiovascularmicrovascularskeletalmuscularfindingsbiomarkersidentifiedTransientreceptormelastatin3paintransductionthermosensationtransmitterneuropeptidemechanoregulationvasorelaxationimmunedefenseshowsalteredfunctionDysfunctionnaturalkillercharacterizedreducedcalciumfluxobservedpatientssuggestingineffectivepathogenclearanceviruspersistenceautoimmunitydevelopmentcanimprovedvitroexvivoexplainmoderateclinicalefficacyLDNtreatmentproposebroaderinvolvementpathophysiologyaffectingpaperdiscussesTRPM3'sexpressionimpactfocussmallnervefibersbrainpresynapticPotentialpathophysiologicalionmyalgicencephalomyelitis/chronictherapeuticeffectExerciseintoleranceLong-COVIDNaltrexoneSmallfiberneuropathy

Similar Articles

Cited By