Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a.

Zhongqi Zhou, Cia-Hin Lau, Jianchao Wang, Rui Guo, Sheng Tong, Jiaqi Li, Wenjiao Dong, Zhihao Huang, Tao Wang, Xiaojun Huang, Ziqing Yu, Chiju Wei, Gang Chen, Hongman Xue, Haibao Zhu
Author Information
  1. Zhongqi Zhou: Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
  2. Cia-Hin Lau: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China. ORCID
  3. Jianchao Wang: Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
  4. Rui Guo: Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, China.
  5. Sheng Tong: Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506-0503, United States. ORCID
  6. Jiaqi Li: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China.
  7. Wenjiao Dong: Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, China.
  8. Zhihao Huang: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China.
  9. Tao Wang: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China.
  10. Xiaojun Huang: Xiamen Fly Gene Biomedical Technology CO., LTD, Biomedical Industrial Park, Xiamen, Fujian 361000, China.
  11. Ziqing Yu: Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
  12. Chiju Wei: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China.
  13. Gang Chen: Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
  14. Hongman Xue: Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
  15. Haibao Zhu: Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, China.

Abstract

To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.

References

  1. Commun Biol. 2021 Apr 19;4(1):476 [PMID: 33875803]
  2. Chem Sci. 2021 Mar 2;12(13):4683-4698 [PMID: 34163728]
  3. Nat Chem Biol. 2021 Sep;17(9):982-988 [PMID: 34354262]
  4. Chem Commun (Camb). 2022 Mar 29;58(26):4247-4250 [PMID: 35289346]
  5. Biosens Bioelectron. 2021 Mar 15;176:112954 [PMID: 33412428]
  6. Nat Biomed Eng. 2021 Jul;5(7):643-656 [PMID: 34272525]
  7. Nature. 2017 Oct 12;550(7675):280-284 [PMID: 28976959]
  8. PLoS One. 2010 Oct 25;5(10):e15407 [PMID: 21049055]
  9. Biosens Bioelectron. 2023 Jun 15;230:115248 [PMID: 37004283]
  10. Sci Adv. 2021 Jan 27;7(5): [PMID: 33571114]
  11. Biosens Bioelectron. 2023 Nov 15;240:115637 [PMID: 37669587]
  12. Anal Chem. 2023 Apr 4;95(13):5729-5737 [PMID: 36944919]
  13. Front Microbiol. 2021 Sep 30;12:751408 [PMID: 34659186]
  14. Front Bioeng Biotechnol. 2023 Oct 10;11:1273988 [PMID: 37885449]
  15. CRISPR J. 2023 Oct;6(5):405-418 [PMID: 37751223]
  16. ACS Nano. 2023 Jul 11;17(13):12903-12914 [PMID: 37384815]
  17. Science. 2018 Apr 27;360(6387):436-439 [PMID: 29449511]
  18. Cell. 2015 Oct 22;163(3):759-71 [PMID: 26422227]
  19. Nano Lett. 2021 Jun 9;21(11):4643-4653 [PMID: 34038136]
  20. Lab Chip. 2023 Oct 24;23(21):4674-4679 [PMID: 37795981]
  21. ACS Nano. 2021 Aug 24;15(8):13475-13485 [PMID: 34369760]
  22. Biophys Physicobiol. 2023 Jul 12;20(3):e200031 [PMID: 38124795]
  23. Nat Commun. 2020 Sep 30;11(1):4906 [PMID: 32999292]
  24. Anal Biochem. 2022 Apr 15;643:114593 [PMID: 35157895]
  25. Nat Med. 2018 Jun;24(6):702 [PMID: 29875459]
  26. Chem Soc Rev. 2023 Jan 3;52(1):361-382 [PMID: 36533412]
  27. Chem Commun (Camb). 2021 Jan 7;57(2):247-250 [PMID: 33306075]
  28. ACS Sens. 2022 Sep 23;7(9):2680-2690 [PMID: 36073895]
  29. Science. 2017 Nov 24;358(6366):1019-1027 [PMID: 29070703]
  30. Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202203826 [PMID: 35559592]
  31. ACS Sens. 2023 Apr 28;8(4):1489-1499 [PMID: 37027291]
  32. Trends Biotechnol. 2024 Jan;42(1):10-13 [PMID: 37516612]
  33. Talanta. 2024 Jan 15;267:125225 [PMID: 37741267]
  34. Theranostics. 2022 Aug 8;12(13):5914-5930 [PMID: 35966585]

Word Cloud

Created with Highcharts 10.0.0DNADSACdetectionCRISPR/Cas12asubstratesignalsystemaccuratepoint-of-caresingle-stepamplification-freenucleictrans-cleavageactivitytargetdualfluorescentsignalspositivesubstratesplatformsASFVhumanenablerapiddevelopedacidplatformsubstrate-mediatedautocatalysismakesuseCas12atemplate-activatedamplificationsemploystwodistincttypes:oneenhancesamplificationnegativelymodulatesinducerutilizesnicked-loop-basedactivateinitiatingfeedbackloopultimatelyamplifyingnegativemodulatorinvolvescompetitor-basedcompetesprobestrans-cleavingresultingdeclinepresencesubstrate-basedsystemsadaptedfluorescence-basedpaper-basedlateralflowstripaccuratelydetectedAfricanswinefevervirusswine'sbloodsamplesfemtomolarsensitivitywithin20mincontrastexistingCRISPR/Dxofferscost-effectivestraightforwardmethodrequiringadditionrationallydesignedoligonucleotideNotablycommonsequence-encodedcandirectlyapplieddetectacidscrRNAtargetingConsequentlypresentsalternativediagnostictoolsensitivetimelydiagnosisviralinfectionspotentialapplicabilitydiseaseRapidAmplification-freeNucleicAcidDetectionSubstrate-MediatedAutocatalysis

Similar Articles

Cited By