Spatial proximity and gene function: a new dimension in prokaryotic gene association network analysis with 3D-GeneNet.

Yuan Gao, Bin Ma, Qianshuai Xu, Yuna Peng, Huimin Gong, Aohan Guan, Kexin Hua, Paul R Langford, Hui Jin, Rui Luo
Author Information
  1. Yuan Gao: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  2. Bin Ma: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  3. Qianshuai Xu: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  4. Yuna Peng: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  5. Huimin Gong: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  6. Aohan Guan: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
  7. Kexin Hua: Swine Genome and Breeding Team, Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
  8. Paul R Langford: Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom.
  9. Hui Jin: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China. ORCID
  10. Rui Luo: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.

Abstract

Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.

Keywords

References

  1. FEBS Lett. 2015 Oct 7;589(20 Pt A):2923-30 [PMID: 26008126]
  2. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  3. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D433-7 [PMID: 15608232]
  4. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16173-8 [PMID: 22988072]
  5. FEMS Microbiol Lett. 2009 Mar;292(1):123-33 [PMID: 19191874]
  6. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2896-901 [PMID: 10077608]
  7. Lancet Microbe. 2022 Jun;3(6):e402 [PMID: 35659898]
  8. Cell. 2018 Feb 8;172(4):771-783.e18 [PMID: 29358050]
  9. Science. 2013 Nov 8;342(6159):731-4 [PMID: 24158908]
  10. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  11. Nucleic Acids Res. 2003 Jan 1;31(1):258-61 [PMID: 12519996]
  12. mBio. 2023 Oct 17;:e0220123 [PMID: 37847580]
  13. Nucleic Acids Res. 2000 Sep 15;28(18):3442-4 [PMID: 10982861]
  14. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61 [PMID: 14681407]
  15. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  16. J Mol Biol. 2007 Oct 19;373(2):251-67 [PMID: 17850814]
  17. Lancet Infect Dis. 2007 Mar;7(3):201-9 [PMID: 17317601]
  18. Cold Spring Harb Perspect Biol. 2015 Oct 01;7(10):a019356 [PMID: 26430217]
  19. Plant Methods. 2021 Jul 23;17(1):82 [PMID: 34301293]
  20. J Bacteriol. 2013 Mar;195(6):1109-19 [PMID: 23292776]
  21. J Comput Biol. 2013 Nov;20(11):831-46 [PMID: 24195706]
  22. Genome Res. 2000 Aug;10(8):1204-10 [PMID: 10958638]
  23. Int J Proteomics. 2014;2014:147648 [PMID: 24693427]
  24. J Mol Evol. 1997 Jan;44(1):66-73 [PMID: 9010137]
  25. Nucleic Acids Res. 2008 May;36(9):e48 [PMID: 18411207]
  26. Bioinformatics. 2005 Mar;21(6):754-64 [PMID: 15479708]
  27. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  28. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7940-5 [PMID: 11438739]
  29. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  30. Mol Cell. 2015 Aug 20;59(4):588-602 [PMID: 26295962]
  31. Nat Rev Genet. 2020 Apr;21(4):227-242 [PMID: 31767998]
  32. Methods Cell Biol. 2000;62:449-53 [PMID: 10503210]
  33. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  34. Genome Res. 2006 Oct;16(10):1299-309 [PMID: 16954542]
  35. Trends Genet. 2000 Jan;16(1):9-11 [PMID: 10637623]
  36. Int J Mol Sci. 2021 Jan 12;22(2): [PMID: 33445415]
  37. Methods Mol Biol. 2012;850:483-94 [PMID: 22307715]
  38. Microb Genom. 2022 May;8(5): [PMID: 35584008]
  39. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W445-8 [PMID: 15215427]
  40. Nature. 2000 Aug 3;406(6795):477-83 [PMID: 10952301]
  41. Cell. 2003 Mar 21;112(6):765-77 [PMID: 12654244]
  42. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6652-7 [PMID: 10823905]
  43. Genome Biol. 2015 Aug 03;16:156 [PMID: 26313521]
  44. Adv Protein Chem. 2000;54:345-79 [PMID: 10829232]
  45. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  46. Science. 2002 Feb 15;295(5558):1306-11 [PMID: 11847345]
  47. Nat Genet. 2006 Nov;38(11):1341-7 [PMID: 17033624]
  48. J Bacteriol. 2001 Nov;183(22):6607-19 [PMID: 11673431]
  49. Science. 2003 Oct 10;302(5643):249-55 [PMID: 12934013]
  50. J Biosci. 2022;47: [PMID: 36210749]
  51. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  52. Trends Biochem Sci. 1998 Sep;23(9):324-8 [PMID: 9787636]
  53. In Silico Biol. 1999;1(2):93-108 [PMID: 11471247]
  54. Curr Opin Cell Biol. 2016 Jun;40:8-14 [PMID: 26852111]
  55. Nat Methods. 2012 Oct;9(10):999-1003 [PMID: 22941365]
  56. Proteomics. 2012 May;12(10):1478-98 [PMID: 22711592]
  57. Sci Adv. 2016 Apr 22;2(4):e1501914 [PMID: 27152358]
  58. Cell. 2012 Feb 3;148(3):458-72 [PMID: 22265598]

Grants

  1. 2021YFD1800405/National Key Research and Development Program of China
  2. 2662023PY005/Fundamental Research Funds for the Central Universities
  3. /Earmarked Fund for CARS-41
  4. 2021CFA016/Natural Science Foundation of Hubei Province
  5. BB/S019901/1/UK Biotechnology and Biological Sciences Research Council

MeSH Term

Gene Regulatory Networks
Software
Algorithms
Computational Biology
High-Throughput Nucleotide Sequencing
Escherichia coli K12
Escherichia coli

Word Cloud

Created with Highcharts 10.0.0gene3D-GeneNetassociationaccuracyinteractionslinearcoligenes3DproximityfunctionalsequencingtopologicalnetworksdistancesvariousK-12multiplebacteriaincludingElong-distancebacterialapplicabilityanalysisnetworkprokaryoticUnderstandingbiologicalfunctionsprocessesparticularlyyetcharacterizedcrucialadvancingmolecularbiologyidentifyingtherapeutictargetshypothesisguidingstudycorrelatesrelevanceprokaryotesintroducedinnovativesoftwaretoolutilizeshigh-throughputdatachromosomeconformationcapturetechniquesintegratesmetricsconstructseriescomparativeanalysesfocusedspatialversusexploreddimensionsstructureenrichmentlevelsdistributionpatternsamongpairsareareceiveroperatingcharacteristiccurveutilizingmodelorganismEscherichiaFurthermoreshownmaintaingoodcomparedalgorithmsneighbourhoodco-occurrencecoexpressionfusionacrossBrucellaabortusVibriocholeraeaddition3D-GeneNet'spredictionidentifiedtwo-hybridassaysMG1655increasedgenomicdistancetripledalsoachieved60%runningaloneFinallycanconcludedwillextendformsGram-negativeGram-positivesingle-multi-chromosomalHi-Cfindingshighlightbroadsignificantpromisemethodrealmfreelyaccessiblehttps://githubcom/gaoyuanccc/3D-GeneNetSpatialfunction:newdimensiongenomehi-C

Similar Articles

Cited By

No available data.