The dynamic behavior of chromatophores marks the transition from bands to spots in leopard geckos.

Asier Ullate-Agote, Athanasia C Tzika
Author Information
  1. Asier Ullate-Agote: Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva 1211, Switzerland. ORCID
  2. Athanasia C Tzika: Laboratory of Artificial & Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva 1211, Switzerland. ORCID

Abstract

Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.

Keywords

References

  1. J Anat. 2015 Nov;227(5):596-610 [PMID: 26360824]
  2. Semin Cell Dev Biol. 2015 Aug;44:87-96 [PMID: 26410165]
  3. Dev Cell. 2016 Aug 8;38(3):316-30 [PMID: 27453500]
  4. Nat Genet. 2014 Aug;46(8):912-918 [PMID: 25017105]
  5. Anat Rec (Hoboken). 2012 Oct;295(10):1575-95 [PMID: 22933425]
  6. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4475-80 [PMID: 10781047]
  7. Anat Rec (Hoboken). 2009 Aug;292(8):1198-212 [PMID: 19645023]
  8. PLoS One. 2015 Dec 03;10(12):e0143630 [PMID: 26633648]
  9. PLoS Genet. 2021 Jun 24;17(6):e1009580 [PMID: 34166378]
  10. Mech Dev. 1990 Dec;33(1):27-37 [PMID: 1982921]
  11. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  12. Mol Biol Cell. 2016 Jun 1;27(11):1853-62 [PMID: 27053658]
  13. J Appl Genet. 2018 Aug;59(3):253-268 [PMID: 29680930]
  14. Dev Dyn. 2022 Sep;251(9):1423-1438 [PMID: 34435397]
  15. Cell. 1993 Dec 31;75(7):1401-16 [PMID: 8269518]
  16. Front Cell Dev Biol. 2024 Feb 07;12:1358828 [PMID: 38385026]
  17. Cell Stem Cell. 2013 Nov 7;13(5):590-601 [PMID: 23933088]
  18. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  19. Elife. 2019 May 29;8: [PMID: 31140974]
  20. Sci Adv. 2023 Jun 16;9(24):eadf8834 [PMID: 37315141]
  21. Integr Comp Biol. 2003 Aug;43(4):591-602 [PMID: 21680467]
  22. Development. 2014 Feb;141(4):737-51 [PMID: 24496612]
  23. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  24. Nature. 2017 Apr 12;544(7649):173-179 [PMID: 28406206]
  25. Annu Rev Genet. 2019 Dec 3;53:505-530 [PMID: 31509458]
  26. J Exp Zool. 1979 May;208(2):153-60 [PMID: 381570]
  27. Genes (Basel). 2023 Apr 13;14(4): [PMID: 37107662]
  28. BMC Dev Biol. 2011 Aug 16;11:50 [PMID: 21846350]
  29. Development. 2008 Jan;135(2):217-25 [PMID: 18057101]
  30. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  31. Sci Rep. 2019 Apr 15;9(1):6101 [PMID: 30988362]
  32. Zoolog Sci. 2006 Jun;23(6):549-56 [PMID: 16849843]
  33. Science. 2014 Sep 12;345(6202):1358-61 [PMID: 25170046]
  34. J Hered. 2023 Aug 23;114(5):513-520 [PMID: 36869788]
  35. Development. 2013 Jul;140(14):2997-3007 [PMID: 23821036]
  36. Dev Cell. 2023 Oct 23;58(20):2140-2162.e5 [PMID: 37591247]
  37. Gene. 1998 Nov 26;223(1-2):303-8 [PMID: 9858754]
  38. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  39. Sci Adv. 2021 Jul 28;7(31): [PMID: 34321199]
  40. Mol Phylogenet Evol. 2022 Mar;168:107414 [PMID: 35032646]
  41. PLoS One. 2015 Jun 03;10(6):e0126740 [PMID: 26039509]
  42. BMC Vet Res. 2016 Jul 12;12(1):139 [PMID: 27405563]
  43. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34031155]
  44. Cells. 2022 May 10;11(10): [PMID: 35626631]
  45. Cell Rep. 2019 Aug 27;28(9):2288-2292.e3 [PMID: 31461646]
  46. STAR Protoc. 2021 Mar 27;2(2):100414 [PMID: 33870222]
  47. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7343-8 [PMID: 24803434]
  48. Curr Biol. 2022 Dec 05;32(23):5069-5082.e13 [PMID: 36379217]
  49. Sci Rep. 2020 Mar 31;10(1):5734 [PMID: 32235892]
  50. Cell Stem Cell. 2012 Aug 3;11(2):231-41 [PMID: 22862948]
  51. F1000Res. 2021 Sep 28;10:979 [PMID: 35814628]
  52. Dev Biol. 2008 May 15;317(2):508-22 [PMID: 18417109]
  53. J Struct Biol. 1996 Jan-Feb;116(1):71-6 [PMID: 8742726]
  54. Hum Mutat. 2017 Dec;38(12):1671-1683 [PMID: 28779497]
  55. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26307-26317 [PMID: 33020272]
  56. Pigment Cell Melanoma Res. 2008 Dec;21(6):677-86 [PMID: 19067972]

Grants

  1. 310030_204466/Swiss National Science Foundation
  2. CD22/00027/Sara Borrell grant
  3. 2015/iGE3 PhD award
  4. 10_2023/Ernst and Lucie Schmidheiny Foundation
  5. 23_28/Fonds General de l'Universite de Geneve
  6. 2024/12/Emile Plantamour Fund

MeSH Term

Animals
Lizards
Chromatophores
Skin Pigmentation
Skin
Melanophores
Gene Expression Regulation, Developmental

Word Cloud

Created with Highcharts 10.0.0skinleopardblackspotschromatophorescolorationpatternhatchlingsiridophoresgeckosbandedgeckotransitionadultanalysesbandsmelanophoresMSSxanthophoresformationReptilianspectaculardiverseyetlittleknownontogeneticprocessesgovernestablishmentmolecularsignalingpathwaysdeterminefocusdevelopmenthistologicalshowpresentwhiteyellowhatchlinggraduallyperishFurthermoredemonstratecanautonomouslyformabsenceregeneratedtaildorsalMackSuperSnowcolormorphcharacterizeduniformadulthoodestablishdevoidstagesgeneticidentified13-nucleotidedeletiontranscriptionfactoraffectingproteincodingsequencesingle-celltranscriptomicsanalysisembryonicconfirmexpressedsuggestingplayskeyroledifferentiationsituhybridizationswhole-mountembryosdocumentdynamicsimpactedmutantshypothesizemelanophores-iridophoresinteractionsgiverisespotintrinsiccapacitypostembryonicdynamicbehaviormarksPAX7reptiles

Similar Articles

Cited By