Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract.

Liliana S McKay, Alexa R Spandrio, Richard M Johnson, M Ashley Sobran, Sara A Marlatt, Katlyn B Mote, Margaret R Dedloff, Zachary M Nash, Steven M Julio, Peggy A Cotter
Author Information
  1. Liliana S McKay: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  2. Alexa R Spandrio: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  3. Richard M Johnson: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  4. M Ashley Sobran: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  5. Sara A Marlatt: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  6. Katlyn B Mote: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  7. Margaret R Dedloff: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  8. Zachary M Nash: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America.
  9. Steven M Julio: Department of Biology, Westmont College, Santa Barbara, California, United States of America.
  10. Peggy A Cotter: Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America. ORCID

Abstract

Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.

References

  1. Cell. 1995 Feb 24;80(4):611-20 [PMID: 7867068]
  2. J Infect Dis. 1983 Jul;148(1):125-30 [PMID: 6309991]
  3. J Bacteriol. 1996 Mar;178(6):1532-8 [PMID: 8626278]
  4. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34 [PMID: 16227431]
  5. J Bacteriol. 1978 Apr;134(1):115-24 [PMID: 25879]
  6. FEMS Microbiol Lett. 2001 Aug 21;202(2):181-7 [PMID: 11520612]
  7. FEBS J. 2011 Dec;278(23):4668-82 [PMID: 21740523]
  8. Curr Protoc Microbiol. 2009 Nov;Chapter 4:Unit 4B.1 [PMID: 19885941]
  9. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  10. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14109-14 [PMID: 21844375]
  11. Am J Public Health Nations Health. 1934 Apr;24(4):309-18 [PMID: 18013967]
  12. Sci Rep. 2016 Oct 21;6:35285 [PMID: 27767067]
  13. J Gen Microbiol. 1970 Oct;63(2):211-20 [PMID: 4324651]
  14. Microbiology (Reading). 1996 Apr;142 ( Pt 4):755-763 [PMID: 8936304]
  15. Mol Microbiol. 2013 Sep;89(5):887-902 [PMID: 23822642]
  16. J Bacteriol. 2006 Mar;188(5):1775-85 [PMID: 16484188]
  17. N Engl J Med. 2010 Dec 2;363(23):2233-47 [PMID: 21121836]
  18. J Bacteriol. 1996 Feb;178(4):1094-8 [PMID: 8576043]
  19. Elife. 2022 Apr 05;11: [PMID: 35380108]
  20. mBio. 2013 Jul 30;4(4): [PMID: 23900169]
  21. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  22. Eur J Biochem. 1991 Jan 30;195(2):517-25 [PMID: 1847686]
  23. Biochim Biophys Acta. 2010 Aug;1797(8):1512-20 [PMID: 20214872]
  24. PLoS Pathog. 2021 Jul 28;17(7):e1008911 [PMID: 34320028]
  25. Eur J Biochem. 2002 Jul;269(14):3479-84 [PMID: 12135487]
  26. mBio. 2013 Feb 12;4(1):e00537-12 [PMID: 23404398]
  27. Res Microbiol. 2002 Jan-Feb;153(1):1-6 [PMID: 11881892]
  28. BMC Genomics. 2012 Oct 10;13:545 [PMID: 23051057]
  29. Mol Gen Genet. 1999 Aug;262(1):189-98 [PMID: 10503551]
  30. Int J Mol Sci. 2022 Mar 15;23(6): [PMID: 35328590]
  31. Mol Microbiol. 2005 Apr;56(2):525-34 [PMID: 15813741]
  32. J Bacteriol. 1992 Feb;174(3):980-90 [PMID: 1370665]
  33. J Bacteriol. 2001 Dec;183(24):7076-86 [PMID: 11717265]
  34. J Bacteriol. 1999 Feb;181(4):1229-37 [PMID: 9973350]
  35. FEBS Lett. 2004 Jun 1;567(1):103-10 [PMID: 15165901]
  36. Biochemistry. 2008 Feb 12;47(6):1752-9 [PMID: 18205406]
  37. Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12815-12819 [PMID: 27791152]
  38. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413 [PMID: 21756872]
  39. Sci Rep. 2017 Jan 16;7:40435 [PMID: 28091535]
  40. J Bacteriol. 2006 Apr;188(7):2375-82 [PMID: 16547023]
  41. Nat Microbiol. 2019 Nov;4(11):2001-2009 [PMID: 31383999]
  42. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  43. mBio. 2016 Dec 20;7(6): [PMID: 27999164]
  44. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6647-51 [PMID: 2842784]
  45. Antioxid Redox Signal. 2021 Jun 1;34(16):1280-1318 [PMID: 32924537]
  46. J Breath Res. 2021 Sep 27;15(4): [PMID: 34507310]
  47. mSystems. 2019 Nov 19;4(6): [PMID: 31744907]
  48. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19685-19694 [PMID: 31427504]
  49. Biochim Biophys Acta. 2001 Jun 1;1505(2-3):185-208 [PMID: 11334784]
  50. J Bacteriol. 1986 Apr;166(1):230-7 [PMID: 3957867]
  51. Mol Microbiol. 1997 May;24(3):579-91 [PMID: 9179851]
  52. Nat Struct Biol. 2000 Oct;7(10):910-7 [PMID: 11017202]
  53. Nat Genet. 2003 Sep;35(1):32-40 [PMID: 12910271]
  54. Appl Environ Microbiol. 2009 Oct;75(20):6496-503 [PMID: 19700544]
  55. Appl Environ Microbiol. 1991 Apr;57(4):1202-6 [PMID: 2059041]
  56. Biochem Biophys Res Commun. 2017 Oct 21;492(3):331-337 [PMID: 28859985]
  57. PLoS Pathog. 2005 Dec;1(4):e45 [PMID: 16389302]
  58. Infect Immun. 2007 Oct;75(10):4891-9 [PMID: 17698572]
  59. Nat Commun. 2022 Jul 1;13(1):3807 [PMID: 35778384]
  60. J Clin Microbiol. 2001 Dec;39(12):4396-403 [PMID: 11724851]
  61. J Bacteriol. 2019 Aug 8;201(17): [PMID: 31235515]
  62. Infect Immun. 2017 Oct 18;85(11): [PMID: 28808161]
  63. Infect Immun. 1994 Aug;62(8):3381-90 [PMID: 8039908]
  64. Cell Host Microbe. 2016 Apr 13;19(4):443-54 [PMID: 27078066]
  65. Infect Immun. 1982 Sep;37(3):1042-9 [PMID: 6813266]
  66. Biochemistry. 2006 Dec 26;45(51):15405-10 [PMID: 17176062]
  67. Infect Immun. 1996 Oct;64(10):4020-6 [PMID: 8926063]
  68. Am J Physiol Lung Cell Mol Physiol. 2020 Jun 1;318(6):L1270-L1279 [PMID: 32348677]
  69. Clin Microbiol Rev. 2016 Jul;29(3):449-86 [PMID: 27029594]
  70. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6693-7 [PMID: 6959147]
  71. PLoS Pathog. 2022 May 2;18(5):e1010102 [PMID: 35500027]
  72. Sci Rep. 2021 Apr 30;11(1):9373 [PMID: 33931696]
  73. FEMS Microbiol Lett. 2021 Apr 22;368(6): [PMID: 33856450]

Grants

  1. R01 AI129541/NIAID NIH HHS
  2. R01 AI153160/NIAID NIH HHS
  3. R21 AI177818/NIAID NIH HHS

MeSH Term

Animals
Mice
Electron Transport Complex IV
Bordetella Infections
Respiratory Tract Infections
Bordetella bronchiseptica
Humans
Respiratory System
Biological Evolution
Bordetella
Bordetella pertussis
Bacterial Proteins

Chemicals

Electron Transport Complex IV
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0BcytochromeinfectionrespiratorypertussisbronchisepticathreeoxidasesoxidaseoxygenbacterialrequiredpathogensBordetellahumanelectroneightoxidase-encodinggrowthambientairsufficientmodelwild-typestrainrequirementstractevolutionLittleknownutilizationclassicalspeciesincludingcausalagentwhoopingcoughinfectsnearlymammalsobligateaerobesuseterminalacceptortransport-coupledoxidativephosphorylationoccupiesmanynichesdistinctlocievolvedbronchiseptica-likeancestornowsurvivesexclusivelytractsfunctionalloci:cydAB1ctaCDFGE1cyoABCD1testhypothesisencodedwithingenomerepresentminimumnumberclasscomparedstrainslackingonepossiblevitrovivoindividualconservedlowUsinghigh-doselarge-volumepersistencelow-dosesmall-volumeestablishmentfoundproducingpertussis-conservedindistinguishablealsodeterminedCyoABCD1causelevelburdenmicethusprimarymurineCydAB1CtaCDFGE1fulfillauxiliaryrolesimportantaspectsassessedtransmissionresultsshedlightenvironmentsurfaceciliatedepitheliumrespirationbacteriacolonizevirulenceCytochromerevealinsightstowardslifemammalian

Similar Articles

Cited By