Aberrant TSC-Rheb axis in Oxytocin receptor+ cells mediate stress-induced anxiety.

Olivia Tabaka, Saheed Lawal, Rodrigo Del Rio Triana, Mian Hou, Alexandra Fraser, Andrew Gallagher, Karen San Agustin Ruiz, Maggie Marmarcz, Matthew Dickinson, Mauricio M Oliveira, Eric Klann, Prerana Shrestha
Author Information
  1. Olivia Tabaka: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.
  2. Saheed Lawal: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.
  3. Rodrigo Del Rio Triana: Center for Neural Science, New York University, New York, NY 10003.
  4. Mian Hou: Center for Neural Science, New York University, New York, NY 10003.
  5. Alexandra Fraser: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.
  6. Andrew Gallagher: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.
  7. Karen San Agustin Ruiz: Center for Neural Science, New York University, New York, NY 10003.
  8. Maggie Marmarcz: Center for Neural Science, New York University, New York, NY 10003.
  9. Matthew Dickinson: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.
  10. Mauricio M Oliveira: Center for Neural Science, New York University, New York, NY 10003.
  11. Eric Klann: Center for Neural Science, New York University, New York, NY 10003.
  12. Prerana Shrestha: Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794.

Abstract

Stress is a major risk for the onset of several maladaptive processes including pathological anxiety, a diffuse state of heightened apprehension over anticipated threats. Pathological anxiety is prevalent in up to 59% of patients with Tuberous Sclerosis complex (TSC), a neurodevelopmental disorder (NDD) caused by loss-of-function mutations in genes for Tuberin () and/or Hamartin () that together comprise the eponymous protein complex. Here, we generated cell type-specific heterozygous knockout of in cells expressing oxytocin receptor (OTRCs) to model pathological anxiety-like behaviors observed in TSC patient population. The stress of prolonged social isolation induces a sustained negative affective state that precipitates behavioral avoidance, often by aberrant oxytocin signaling in the limbic forebrain. In response to social isolation, there were striking sex differences in stress susceptibility in conditional heterozygote mice when encountering situations of approach-avoidance conflict. Socially isolated male mutants exhibited behavioral avoidance in anxiogenic environments and sought more social interaction for buffering of stress. In contrast, female mutants developed resilience during social isolation and approached anxiogenic environments, while devaluing social interaction. Systemic and medial prefrontal cortex (mPFC)-specific inhibition of downstream effector of TSC, the integrated stress response (ISR), rescued behavioral approach toward anxiogenic environments and conspecifics in male and female mutant mice respectively. Further, we found that deletion in OTRCs leads to OTR-signaling elicited network suppression, i.e., hypofrontality, in male mPFC, which is relieved by inhibiting the ISR. Our findings present evidence in support of a sexually dimorphic role of prefrontal OTRCs in regulating emotional responses in anxiogenic environments, which goes awry in TSC. Our work has broader implications for developing effective treatments for subtypes of anxiety disorders that are characterized by cell-autonomous ISR and prefrontal network suppression.

References

  1. Neurobiol Dis. 2012 Jan;45(1):156-64 [PMID: 21827857]
  2. Front Mol Neurosci. 2022 Nov 17;15:1002846 [PMID: 36466805]
  3. J Neurosci. 2019 Apr 24;39(17):3249-3263 [PMID: 30804095]
  4. Mol Psychiatry. 2023 Jan;28(1):191-201 [PMID: 36434053]
  5. Cereb Cortex. 2006 Mar;16(3):313-20 [PMID: 15901656]
  6. Mol Cell. 2008 Mar 14;29(5):541-51 [PMID: 18342602]
  7. Cell Rep. 2015 Feb 10;10(5):684-693 [PMID: 25660019]
  8. Neuropharmacology. 2019 Sep 15;156:107504 [PMID: 30664846]
  9. Mol Biol Cell. 2019 Oct 15;30(22):2750-2760 [PMID: 31532697]
  10. Cell. 2016 Sep 22;167(1):60-72.e11 [PMID: 27641503]
  11. PLoS One. 2016 Sep 14;11(9):e0162766 [PMID: 27627766]
  12. Nature. 2011 Nov 23;480(7375):63-8 [PMID: 22113615]
  13. Endocrinology. 1997 Jul;138(7):2829-34 [PMID: 9202224]
  14. Neuron. 2014 Sep 3;83(5):1131-43 [PMID: 25155956]
  15. Nat Methods. 2015 May;12(5):411-4 [PMID: 25775042]
  16. Brain Res. 2014 Sep 11;1580:22-56 [PMID: 24468203]
  17. Trends Neurosci. 2012 Nov;35(11):649-59 [PMID: 22974560]
  18. Biol Psychiatry. 2003 Aug 1;54(3):200-7 [PMID: 12893096]
  19. Neurochem Int. 2024 Mar;174:105678 [PMID: 38266657]
  20. Mol Psychiatry. 2023 Nov;28(11):4742-4755 [PMID: 34035479]
  21. Exp Neurobiol. 2018 Dec;27(6):539-549 [PMID: 30636904]
  22. Nat Neurosci. 2020 Oct;23(10):1240-1252 [PMID: 32868932]
  23. Curr Biol. 2005 Apr 26;15(8):702-13 [PMID: 15854902]
  24. J Neurosci. 2016 Mar 16;36(11):3322-35 [PMID: 26985040]
  25. Science. 2012 Sep 14;337(6100):1357-60 [PMID: 22984073]
  26. Curr Med Res Opin. 2011 Aug;27(8):1571-83 [PMID: 21692602]
  27. Cell. 2016 Feb 11;164(4):617-31 [PMID: 26871628]
  28. Int J Neuropsychopharmacol. 2013 Aug;16(7):1635-47 [PMID: 23442729]
  29. J Neurosci. 2014 Oct 29;34(44):14624-32 [PMID: 25355215]
  30. Nature. 1992 Feb 27;355(6363):827-9 [PMID: 1311418]
  31. Orphanet J Rare Dis. 2018 Sep 10;13(1):157 [PMID: 30201051]
  32. Neuropharmacology. 2020 Jan 1;162:107836 [PMID: 31682854]
  33. EMBO Rep. 2016 Oct;17(10):1374-1395 [PMID: 27629041]
  34. Elife. 2022 Apr 22;11: [PMID: 35451958]
  35. Neural Plast. 2016;2016:6212983 [PMID: 26881124]
  36. Pediatr Neurol. 2013 Oct;49(4):243-54 [PMID: 24053982]
  37. J Neuroendocrinol. 2000 Mar;12(3):235-43 [PMID: 10718919]
  38. Lancet Neurol. 2015 Jul;14(7):733-45 [PMID: 26067126]
  39. Nat Neurosci. 2012 Dec;15(12):1621-3 [PMID: 23143512]
  40. Trends Neurosci. 2022 Apr;45(4):297-311 [PMID: 35184897]
  41. Psychoneuroendocrinology. 1997 Aug;22(6):411-22 [PMID: 9364620]
  42. Nat Med. 2008 Aug;14(8):843-8 [PMID: 18568033]
  43. Prog Brain Res. 2008;170:261-76 [PMID: 18655888]
  44. Front Mol Neurosci. 2018 Aug 14;11:246 [PMID: 30158853]
  45. J Neurosci. 2006 Jul 26;26(30):7870-4 [PMID: 16870732]
  46. Neuron. 2022 Mar 2;110(5):795-808.e6 [PMID: 34932941]
  47. Pediatr Neurol. 2015 Apr;52(4):435-41 [PMID: 25771998]
  48. Nat Neurosci. 2021 Apr;24(4):529-541 [PMID: 33589833]
  49. J Neurosci. 2001 Apr 1;21(7):2546-52 [PMID: 11264328]
  50. Cell. 2014 Oct 9;159(2):295-305 [PMID: 25303526]
  51. Ann N Y Acad Sci. 1998 May 1;840:33-44 [PMID: 9629234]
  52. J Neurosci. 2018 Jan 17;38(3):648-658 [PMID: 29196323]
  53. Physiol Behav. 1982 Nov;29(5):819-25 [PMID: 7156221]
  54. Cell Rep. 2023 Aug 29;42(8):112901 [PMID: 37505982]
  55. Sleep. 2017 Jul 1;40(7): [PMID: 28541519]
  56. Nat Rev Dis Primers. 2016 May 26;2:16035 [PMID: 27226234]
  57. Cell Rep. 2021 May 11;35(6):109104 [PMID: 33979617]
  58. Nat Neurosci. 2020 Dec;23(12):1597-1605 [PMID: 33230328]
  59. Nat Neurosci. 2020 Jan;23(1):61-74 [PMID: 31844314]
  60. Cell Rep. 2021 Aug 10;36(6):109511 [PMID: 34380034]
  61. Nature. 2012 Aug 30;488(7413):647-51 [PMID: 22763451]
  62. Psychoneuroendocrinology. 2014 Jul;45:31-42 [PMID: 24845174]
  63. Neuron. 2008 Jun 26;58(6):911-24 [PMID: 18579081]
  64. Genesis. 2007 Feb;45(2):101-6 [PMID: 17245776]
  65. Neuron. 2001 Aug 16;31(3):453-62 [PMID: 11516401]
  66. Sci Rep. 2024 Mar 26;14(1):7137 [PMID: 38531904]
  67. Nature. 2013 Nov 28;503(7477):521-4 [PMID: 24097352]

Grants

  1. R01 MH132795/NIMH NIH HHS
  2. R01 NS034007/NINDS NIH HHS
  3. R01 NS047384/NINDS NIH HHS
  4. R37 NS034007/NINDS NIH HHS
  5. R29 NS034007/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0socialanxietyTSCstressanxiogenicenvironmentsOTRCsisolationbehavioralmaleprefrontalISRpathologicalstatecomplexcellsoxytocinavoidanceresponsemicemutantsinteractionfemalemPFCnetworksuppressionStressmajorriskonsetseveralmaladaptiveprocessesincludingdiffuseheightenedapprehensionanticipatedthreatsPathologicalprevalent59%patientsTuberousSclerosisneurodevelopmentaldisorderNDDcausedloss-of-functionmutationsgenesTuberinand/orHamartintogethercompriseeponymousproteingeneratedcelltype-specificheterozygousknockoutexpressingreceptormodelanxiety-likebehaviorsobservedpatientpopulationprolongedinducessustainednegativeaffectiveprecipitatesoftenaberrantsignalinglimbicforebrainstrikingsexdifferencessusceptibilityconditionalheterozygoteencounteringsituationsapproach-avoidanceconflictSociallyisolatedexhibitedsoughtbufferingcontrastdevelopedresilienceapproacheddevaluingSystemicmedialcortex-specificinhibitiondownstreameffectorintegratedrescuedapproachtowardconspecificsmutantrespectivelyfounddeletionleadsOTR-signalingelicitediehypofrontalityrelievedinhibitingfindingspresentevidencesupportsexuallydimorphicroleregulatingemotionalresponsesgoesawryworkbroaderimplicationsdevelopingeffectivetreatmentssubtypesdisorderscharacterizedcell-autonomousAberrantTSC-RhebaxisOxytocinreceptor+mediatestress-induced

Similar Articles

Cited By

No available data.