Estimating the total variance explained by whole-brain imaging for zero-inflated outcomes.

Junting Ren, Robert Loughnan, Bohan Xu, Wesley K Thompson, Chun Chieh Fan
Author Information
  1. Junting Ren: Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Street, La Jolla, 92093, CA, USA. junting.ren.stat@gmail.com. ORCID
  2. Robert Loughnan: Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA.
  3. Bohan Xu: Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA.
  4. Wesley K Thompson: Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Street, La Jolla, 92093, CA, USA.
  5. Chun Chieh Fan: Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, 74136, OK, USA. CFan@laureateinstitute.org. ORCID

Abstract

There is a dearth of statistical models that adequately capture the total signal attributed to whole-brain imaging features. The total signal is often widely distributed across the brain, with individual imaging features exhibiting small effect sizes for predicting neurobehavioral phenotypes. The challenge of capturing the total signal is compounded by the distribution of neurobehavioral data, particularly responses to psychological questionnaires, which often feature zero-inflated, highly skewed outcomes. To close this gap, we have developed a novel Variational Bayes algorithm that characterizes the total signal captured by whole-brain imaging features for zero-inflated outcomes. Our zero-inflated variance (ZIV) estimator estimates the fraction of variance explained (FVE) and the proportion of non-null effects (PNN) from large-scale imaging data. In simulations, ZIV demonstrates superior performance over other linear models. When applied to data from the Adolescent Brain Cognitive Development (ABCD) Study, we found that whole-brain imaging features contribute to a larger FVE for externalizing behaviors compared to internalizing behaviors. Moreover, focusing on features contributing to the PNN, ZIV estimator localized key neurocircuitry associated with neurobehavioral traits. To the best of our knowledge, the ZIV estimator is the first specialized method for analyzing zero-inflated neuroimaging data, enhancing future studies on brain-behavior relationships and improving the understanding of neurobehavioral disorders.

References

  1. Neuroimage. 2021 Oct 1;239:118262 [PMID: 34147629]
  2. Dev Cogn Neurosci. 2018 Aug;32:4-7 [PMID: 29051027]
  3. Biol Psychiatry. 2012 Mar 1;71(5):434-42 [PMID: 21974788]
  4. Lancet Psychiatry. 2022 Mar;9(3):222-231 [PMID: 35143759]
  5. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  6. Nat Rev Neurosci. 2022 May;23(5):307-318 [PMID: 35365814]
  7. Hum Brain Mapp. 2013 Nov;34(11):3066-74 [PMID: 22736538]
  8. Neuron. 2017 Aug 16;95(4):791-807.e7 [PMID: 28757305]
  9. MMWR Suppl. 2022 Feb 25;71(2):1-42 [PMID: 35202359]
  10. Dev Cogn Neurosci. 2018 Aug;32:161-164 [PMID: 29773510]
  11. Neuroimage. 2018 Apr 1;169:352-362 [PMID: 29277650]
  12. Nature. 2020 Jun;582(7810):84-88 [PMID: 32483374]
  13. Neuropsychopharmacology. 2021 Jun;46(7):1333-1339 [PMID: 33479512]
  14. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):E5749-56 [PMID: 27613854]
  15. Front Hum Neurosci. 2022 Jan 13;15:781554 [PMID: 35145385]
  16. J Health Econ. 2010 Jan;29(1):110-23 [PMID: 20015560]
  17. Genome Biol. 2019 May 28;20(1):107 [PMID: 31138268]
  18. Nature. 2022 Mar;603(7902):654-660 [PMID: 35296861]
  19. Dev Cogn Neurosci. 2018 Aug;32:43-54 [PMID: 29567376]
  20. J Child Psychol Psychiatry. 2022 Dec;63(12):1631-1643 [PMID: 35764363]
  21. Qual Life Res. 2000;9(8):901-10 [PMID: 11284209]
  22. Cereb Cortex. 2021 Feb 5;31(3):1478-1488 [PMID: 33145600]
  23. Neuroimage. 2019 Nov 15;202:116091 [PMID: 31415884]
  24. Neuroimage. 2006 Jul 1;31(3):968-80 [PMID: 16530430]
  25. Stat Methods Med Res. 2016 Feb;25(1):133-52 [PMID: 22474003]
  26. Nat Genet. 2024 Feb;56(2):336-347 [PMID: 38279041]
  27. Dev Cogn Neurosci. 2018 Aug;32:55-66 [PMID: 29113758]
  28. JAMA Psychiatry. 2020 Apr 1;77(4):378-386 [PMID: 31876910]
  29. Neuropsychopharmacology. 2021 Jan;46(1):131-142 [PMID: 32541809]
  30. Neuron. 2018 Jan 17;97(2):263-268 [PMID: 29346749]
  31. Biol Psychiatry. 2020 Nov 1;88(9):678-686 [PMID: 32646651]
  32. Dev Cogn Neurosci. 2018 Aug;32:16-22 [PMID: 29703560]
  33. Cereb Cortex. 2020 Nov 3;30(12):6083-6096 [PMID: 32591777]
  34. Biometrics. 2014 Mar;70(1):132-43 [PMID: 24354514]
  35. Nat Commun. 2021 Apr 13;12(1):2205 [PMID: 33850154]
  36. Nat Commun. 2014 Sep 19;5:4890 [PMID: 25234577]
  37. J Am Acad Child Adolesc Psychiatry. 2012 Jan;51(1):18-27.e2 [PMID: 22176936]
  38. Hum Brain Mapp. 2020 Oct 1;41(14):4062-4076 [PMID: 32687259]
  39. Stat Med. 2022 Jun 15;41(13):2354-2374 [PMID: 35274335]
  40. J Int Neuropsychol Soc. 2013 Apr;19(4):430-41 [PMID: 23369894]
  41. PLoS Biol. 2017 Mar 2;15(3):e2000797 [PMID: 28253258]
  42. Bioinformatics. 2016 Sep 1;32(17):2611-7 [PMID: 27187200]
  43. Genome Biol. 2022 Jan 21;23(1):31 [PMID: 35063006]

Grants

  1. U24 DA041147/NIDA NIH HHS
  2. U01 DA041120/NIDA NIH HHS
  3. U24 DA041123/NIDA NIH HHS
  4. R01 MH128959/NIMH NIH HHS
  5. U01 DA041089/NIDA NIH HHS
  6. U01 DA041106/NIDA NIH HHS
  7. U01 DA041117/NIDA NIH HHS
  8. RF1MH120025/U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  9. U01 DA041174/NIDA NIH HHS
  10. R01MH128959/U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  11. U01 DA041134/NIDA NIH HHS
  12. U01 DA041022/NIDA NIH HHS
  13. RF1 MH120025/NIMH NIH HHS
  14. U01 DA041156/NIDA NIH HHS
  15. U01 DA041028/NIDA NIH HHS
  16. U01 DA041048/NIDA NIH HHS
  17. R01MH122688/U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  18. R01 MH122688/NIMH NIH HHS
  19. U01 DA041148/NIDA NIH HHS

MeSH Term

Humans
Brain
Neuroimaging
Adolescent
Algorithms
Bayes Theorem
Female
Male
Magnetic Resonance Imaging
Models, Statistical
Child

Word Cloud

Created with Highcharts 10.0.0imagingtotalfeatureszero-inflatedsignalwhole-brainneurobehavioraldataZIVoutcomesvarianceestimatormodelsoftenexplainedFVEPNNbehaviorsdearthstatisticaladequatelycaptureattributedwidelydistributedacrossbrainindividualexhibitingsmalleffectsizespredictingphenotypeschallengecapturingcompoundeddistributionparticularlyresponsespsychologicalquestionnairesfeaturehighlyskewedclosegapdevelopednovelVariationalBayesalgorithmcharacterizescapturedestimatesfractionproportionnon-nulleffectslarge-scalesimulationsdemonstratessuperiorperformancelinearappliedAdolescentBrainCognitiveDevelopmentABCDStudyfoundcontributelargerexternalizingcomparedinternalizingMoreoverfocusingcontributinglocalizedkeyneurocircuitryassociatedtraitsbestknowledgefirstspecializedmethodanalyzingneuroimagingenhancingfuturestudiesbrain-behaviorrelationshipsimprovingunderstandingdisordersEstimating

Similar Articles

Cited By