Molecular Dynamics Simulations in Protein-Protein Docking.

Dominika Cie��lak, Ivo Kabelka, Damian Bartuzi
Author Information
  1. Dominika Cie��lak: Laboratory of Plant Protein Phosphorylation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
  2. Ivo Kabelka: Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
  3. Damian Bartuzi: Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden. damian.bartuzi@icm.uu.se.

Abstract

Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain "hot spots," which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.

Keywords

References

  1. Ma W, Mayr C (2018) A Membraneless Organelle associated with the endoplasmic reticulum enables 3���UTR-mediated protein-protein interactions. Cell 175:1492���1506.e19. https://doi.org/10.1016/j.cell.2018.10.007 [DOI: 10.1016/j.cell.2018.10.007]
  2. Hardenberg M, Horvath A, Ambrus V et al (2020) Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci 117:33254���33262. https://doi.org/10.1073/pnas.2007670117 [DOI: 10.1073/pnas.2007670117]
  3. Javanainen M, Hammaren H, Monticelli L et al (2013) Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss 161:397���417. https://doi.org/10.1039/C2FD20085F [DOI: 10.1039/C2FD20085F]
  4. Webby MN, Oluwole AO, Pedebos C et al (2022) Lipids mediate supramolecular outer membrane protein assembly in bacteria. Sci Adv 8:eadc9566. https://doi.org/10.1126/sciadv.adc9566 [DOI: 10.1126/sciadv.adc9566]
  5. Gupta K, Donlan JAC, Hopper JTS et al (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:421���424. https://doi.org/10.1038/nature20820 [DOI: 10.1038/nature20820]
  6. Guidotti G (1972) Membrane Proteins. Annu Rev Biochem 41:731���752. https://doi.org/10.1146/annurev.bi.41.070172.003503 [DOI: 10.1146/annurev.bi.41.070172.003503]
  7. Sowers AE, Hackenbrock CR (1981) Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci 78:6246���6250. https://doi.org/10.1073/pnas.78.10.6246 [DOI: 10.1073/pnas.78.10.6246]
  8. Lind��n M, Sens P, Phillips R (2012) Entropic tension in crowded membranes. PLoS Comput Biol 8:e1002431. https://doi.org/10.1371/journal.pcbi.1002431 [DOI: 10.1371/journal.pcbi.1002431]
  9. Tian A, Baumgart T (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96:2676���2688. https://doi.org/10.1016/j.bpj.2008.11.067 [DOI: 10.1016/j.bpj.2008.11.067]
  10. Parton DL, Klingelhoefer JW, Sansom MSP (2011) Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys J 101:691���699. https://doi.org/10.1016/j.bpj.2011.06.048 [DOI: 10.1016/j.bpj.2011.06.048]
  11. Rao VS, Srinivas K, Sujini GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:1���12. https://doi.org/10.1155/2014/147648 [DOI: 10.1155/2014/147648]
  12. Nevola L, Giralt E (2015) Modulating protein���protein interactions: the potential of peptides. Chem Commun 51:3302���3315. https://doi.org/10.1039/C4CC08565E [DOI: 10.1039/C4CC08565E]
  13. London N, Raveh B, Schueler-Furman O (2013) Druggable protein���protein interactions ��� from hot spots to hot segments. Curr Opin Chem Biol 17:952���959. https://doi.org/10.1016/j.cbpa.2013.10.011 [DOI: 10.1016/j.cbpa.2013.10.011]
  14. Neklesa TK, Winkler JD, Crews CM (2017) Targeted protein degradation by PROTACs. Pharmacol Ther 174:138���144. https://doi.org/10.1016/j.pharmthera.2017.02.027 [DOI: 10.1016/j.pharmthera.2017.02.027]
  15. Lee J, Lee Y, Jung YM et al (2022) Discovery of E3 ligase ligands for target protein degradation. Molecules 27:6515. https://doi.org/10.3390/molecules27196515 [DOI: 10.3390/molecules27196515]
  16. Tompa P, Fuxreiter M, Oldfield CJ et al (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31:328���335. https://doi.org/10.1002/bies.200800151 [DOI: 10.1002/bies.200800151]
  17. Rakers C, Bermudez M, Keller BG et al (2015) Computational close up on protein���protein interactions: how to unravel the invisible using molecular dynamics simulations? WIREs Comput Mol Sci 5:345���359. https://doi.org/10.1002/wcms.1222 [DOI: 10.1002/wcms.1222]
  18. Zhao C, Shukla D (2018) SAXS-guided enhanced unbiased sampling for structure determination of proteins and complexes. Sci Rep 8:17748. https://doi.org/10.1038/s41598-018-36090-z [DOI: 10.1038/s41598-018-36090-z]
  19. Ko SK, Berner C, Kulakova A et al (2022) Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Comput Struct Biotechnol J 20:1439���1455. https://doi.org/10.1016/j.csbj.2022.03.012 [DOI: 10.1016/j.csbj.2022.03.012]
  20. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585���590. https://doi.org/10.1038/267585a0 [DOI: 10.1038/267585a0]
  21. Perilla JR, Goh BC, Cassidy CK et al (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64���74. https://doi.org/10.1016/j.sbi.2015.03.007 [DOI: 10.1016/j.sbi.2015.03.007]
  22. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129���1143. https://doi.org/10.1016/j.neuron.2018.08.011 [DOI: 10.1016/j.neuron.2018.08.011]
  23. Shan Y, Kim ET, Eastwood MP et al (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133:9181���9183. https://doi.org/10.1021/ja202726y [DOI: 10.1021/ja202726y]
  24. Oliveira Bortot L, Bashardanesh Z, van der Spoel D (2020) Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. J Chem Inf Model 60:322���331. https://doi.org/10.1021/acs.jcim.9b00971 [DOI: 10.1021/acs.jcim.9b00971]
  25. Robustelli P, Piana S, Shaw DE (2020) Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. J Am Chem Soc 142:11092���11101. https://doi.org/10.1021/jacs.0c03217 [DOI: 10.1021/jacs.0c03217]
  26. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141���151. https://doi.org/10.1016/S0009-2614(99)01123-9 [DOI: 10.1016/S0009-2614(99)01123-9]
  27. H��nin J, Leli��vre T, Shirts MR et al (2022) Enhanced sampling methods for molecular dynamics simulations. Liv J Comput Mol Sci 4(1):1583
  28. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233���W238. https://doi.org/10.1093/nar/gkn216 [DOI: 10.1093/nar/gkn216]
  29. Glashagen G, de Vries S, Uciechowska-Kaczmarzyk U et al (2020) Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach. Proteins Struct Funct Bioinforma 88:1018���1028. https://doi.org/10.1002/prot.25860 [DOI: 10.1002/prot.25860]
  30. Kurcinski M, Badaczewska-Dawid A, Kolinski M et al (2020) Flexible docking of peptides to proteins using CABS-dock. Protein Sci Publ Protein Soc 29:211���222. https://doi.org/10.1002/pro.3771 [DOI: 10.1002/pro.3771]
  31. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07���L09. https://doi.org/10.1529/biophysj.108.132696 [DOI: 10.1529/biophysj.108.132696]
  32. Patapati KK, Glykos NM (2011) Three force fields��� views of the 310 Helix. Biophys J 101:1766���1771. https://doi.org/10.1016/j.bpj.2011.08.044 [DOI: 10.1016/j.bpj.2011.08.044]
  33. Best RB, Mittal J (2010) Protein simulations with an optimized water model: cooperative Helix formation and temperature-induced unfolded state collapse. J Phys Chem B 114:14916���14923. https://doi.org/10.1021/jp108618d [DOI: 10.1021/jp108618d]
  34. Best RB, Zheng W, Mittal J (2015) Correction to balanced protein���water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 11:1978���1978. https://doi.org/10.1021/acs.jctc.5b00219 [DOI: 10.1021/acs.jctc.5b00219]
  35. Chen F, Liu H, Sun H et al (2016) Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein���protein binding free energies and re-rank binding poses generated by protein���protein docking. Phys Chem Chem Phys 18:22129���22139. https://doi.org/10.1039/C6CP03670H [DOI: 10.1039/C6CP03670H]
  36. Ing��lfsson HI, Lopez CA, Uusitalo JJ et al (2014) The power of coarse graining in biomolecular simulations. WIREs Comput Mol Sci 4:225���248. https://doi.org/10.1002/wcms.1169 [DOI: 10.1002/wcms.1169]
  37. Baaden M, Marrink SJ (2013) Coarse-grain modelling of protein���protein interactions. Curr Opin Struct Biol 23:878���886. https://doi.org/10.1016/j.sbi.2013.09.004 [DOI: 10.1016/j.sbi.2013.09.004]
  38. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812���7824. https://doi.org/10.1021/jp071097f [DOI: 10.1021/jp071097f]
  39. Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42:6801. https://doi.org/10.1039/c3cs60093a [DOI: 10.1039/c3cs60093a]
  40. Souza PCT, Alessandri R, Barnoud J et al (2021) Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18:382���388. https://doi.org/10.1038/s41592-021-01098-3 [DOI: 10.1038/s41592-021-01098-3]
  41. Davtyan A, Schafer NP, Zheng W et al (2012) AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. J Phys Chem B 116:8494���8503. https://doi.org/10.1021/jp212541y [DOI: 10.1021/jp212541y]
  42. Machado MR, Barrera EE, Klein F et al (2019) The SIRAH 2.0 Force field: Altius, Fortius. Citius J Chem Theory Comput 15:2719���2733. https://doi.org/10.1021/acs.jctc.9b00006 [DOI: 10.1021/acs.jctc.9b00006]
  43. Sahoo A, Lee P-Y, Matysiak S (2022) Transferable and polarizable coarse grained model for proteins���ProMPT. J Chem Theory Comput 18:5046���5055. https://doi.org/10.1021/acs.jctc.2c00269 [DOI: 10.1021/acs.jctc.2c00269]
  44. Stark AC, Andrews CT, Elcock AH (2013) Toward optimized potential functions for protein���protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI Coarse-Grained Force Field. J Chem Theory Comput 9:4176���4185. https://doi.org/10.1021/ct400008p [DOI: 10.1021/ct400008p]
  45. Lamprakis C, Andreadelis I, Manchester J et al (2021) Evaluating the efficiency of the Martini Force Field to study protein dimerization in aqueous and membrane environments. J Chem Theory Comput 17:3088���3102. https://doi.org/10.1021/acs.jctc.0c00507 [DOI: 10.1021/acs.jctc.0c00507]
  46. Sch��fer LV, de Jong DH, Holt A et al (2011) Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci 108:1343���1348. https://doi.org/10.1073/pnas.1009362108 [DOI: 10.1073/pnas.1009362108]
  47. Jarin Z, Newhouse J, Voth GA (2021) Coarse-Grained Force Fields from the perspective of statistical mechanics: better understanding of the origins of a MARTINI hangover. J Chem Theory Comput 17:1170���1180. https://doi.org/10.1021/acs.jctc.0c00638 [DOI: 10.1021/acs.jctc.0c00638]
  48. Javanainen M, Martinez-Seara H, Vattulainen I (2017) Excessive aggregation of membrane proteins in the Martini model. PLoS One 12:e0187936. https://doi.org/10.1371/journal.pone.0187936 [DOI: 10.1371/journal.pone.0187936]
  49. Khan HM, Souza PCT, Thallmair S et al (2020) Capturing choline���aromatics cation����� interactions in the MARTINI Force Field. J Chem Theory Comput 16:2550���2560. https://doi.org/10.1021/acs.jctc.9b01194 [DOI: 10.1021/acs.jctc.9b01194]
  50. Tsai M-Y, Zheng W, Balamurugan D et al (2016) Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. Protein Sci 25:255���269. https://doi.org/10.1002/pro.2751 [DOI: 10.1002/pro.2751]
  51. Zheng W, Schafer NP, Davtyan A et al (2012) Predictive energy landscapes for protein���protein association. Proc Natl Acad Sci 109:19244���19249. https://doi.org/10.1073/pnas.1216215109 [DOI: 10.1073/pnas.1216215109]
  52. Chen M, Lin X, Zheng W et al (2016) Protein folding and structure prediction from the ground up: the atomistic associative memory, water mediated, structure and energy model. J Phys Chem B 120:8557���8565. https://doi.org/10.1021/acs.jpcb.6b02451 [DOI: 10.1021/acs.jpcb.6b02451]
  53. Garg P, Semmler S, Baudouin C et al (2022) Misfolding-associated exposure of natively buried residues in mutant SOD1 facilitates binding to TRAF6. J Mol Biol 434:167697. https://doi.org/10.1016/j.jmb.2022.167697 [DOI: 10.1016/j.jmb.2022.167697]
  54. McInnes L, Healy J, Astels S (2017) hdbscan: hierarchical density based clustering. J Open Source Softw 2:205. https://doi.org/10.21105/joss.00205 [DOI: 10.21105/joss.00205]
  55. Darr�� L, Machado MR, Brandner AF et al (2015) SIRAH: a structurally unbiased Coarse-Grained Force Field for proteins with aqueous solvation and long-range electrostatics. J Chem Theory Comput 11:723���739. https://doi.org/10.1021/ct5007746 [DOI: 10.1021/ct5007746]
  56. Periole X, Huber T, Marrink S-J, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126���10132. https://doi.org/10.1021/ja0706246 [DOI: 10.1021/ja0706246]
  57. Lund M, J��nsson B (2003) A Mesoscopic Model for protein-protein interactions in solution. Biophys J 85:2940���2947. https://doi.org/10.1016/S0006-3495(03)74714-6 [DOI: 10.1016/S0006-3495(03)74714-6]
  58. Pasquier C, Midtgaard SR, Polimeni M et al (2023) Anisotropic protein-protein interactions in dilute and concentrated solutions. J Colloid Interface Sci 629:794���804. https://doi.org/10.1016/j.jcis.2022.08.054 [DOI: 10.1016/j.jcis.2022.08.054]
  59. Qiao X, Jeon J, Weber J et al (2015) Mechanism of polymorphism and curvature of HIV capsid assemblies probed by 3D simulations with a novel coarse grain model. Biochim Biophys Acta BBA - Gen Subj 1850:2353���2367. https://doi.org/10.1016/j.bbagen.2015.08.017 [DOI: 10.1016/j.bbagen.2015.08.017]
  60. Suken��k L, Mukhamedova L, Proch��zkov�� M et al (2021) Cargo release from nonenveloped viruses and virus-like nanoparticles: capsid rupture or pore formation. ACS Nano 15:19233���19243. https://doi.org/10.1021/acsnano.1c04814 [DOI: 10.1021/acsnano.1c04814]
  61. Wang J, Arantes PR, Bhattarai A et al (2021) Gaussian accelerated molecular dynamics: principles and applications. WIREs Comput Mol Sci 11. https://doi.org/10.1002/wcms.1521
  62. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187���199. https://doi.org/10.1016/0021-9991(77)90121-8 [DOI: 10.1016/0021-9991(77)90121-8]
  63. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601. https://doi.org/10.1088/0034-4885/71/12/126601 [DOI: 10.1088/0034-4885/71/12/126601]
  64. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584���3595. https://doi.org/10.1021/acs.jctc.5b00436 [DOI: 10.1021/acs.jctc.5b00436]
  65. Lange OF, Sch��fer LV, Grubm��ller H (2006) Flooding in GROMACS: accelerated barrier crossings in molecular dynamics. J Comput Chem 27:1693���1702. https://doi.org/10.1002/jcc.20473 [DOI: 10.1002/jcc.20473]
  66. Wang J, Alekseenko A, Kozakov D, Miao Y (2019) Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Front Mol Biosci 6:112. https://doi.org/10.3389/fmolb.2019.00112 [DOI: 10.3389/fmolb.2019.00112]
  67. Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein���peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431���W435. https://doi.org/10.1093/nar/gkv495 [DOI: 10.1093/nar/gkv495]
  68. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934. https://doi.org/10.1371/journal.pone.0018934 [DOI: 10.1371/journal.pone.0018934]
  69. van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720���725. https://doi.org/10.1016/j.jmb.2015.09.014 [DOI: 10.1016/j.jmb.2015.09.014]
  70. Porter KA, Xia B, Beglov D et al (2017) ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics 33:3299���3301. https://doi.org/10.1093/bioinformatics/btx216 [DOI: 10.1093/bioinformatics/btx216]
  71. de Vries SJ, Rey J, Schindler CEM et al (2017) The pepATTRACT web server for blind, large-scale peptide���protein docking. Nucleic Acids Res 45:W361���W364. https://doi.org/10.1093/nar/gkx335 [DOI: 10.1093/nar/gkx335]
  72. Jakhmola S, Sk MF, Chatterjee A et al (2022) A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput Biol Med 148:105856. https://doi.org/10.1016/j.compbiomed.2022.105856 [DOI: 10.1016/j.compbiomed.2022.105856]
  73. Zhou P, Jin B, Li H, Huang S-Y (2018) HPEPDOCK: a web server for blind peptide���protein docking based on a hierarchical algorithm. Nucleic Acids Res 46:W443���W450. https://doi.org/10.1093/nar/gky357 [DOI: 10.1093/nar/gky357]
  74. Vajda S, Yueh C, Beglov D et al (2017) New additions to the ClusPro server motivated by CAPRI. Proteins 85:435���444. https://doi.org/10.1002/prot.25219 [DOI: 10.1002/prot.25219]
  75. Wang Y-T, Cheng T-L (2021) Computational modeling of cyclic peptide inhibitor���MDM2/MDMX binding through global docking and Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 39:4005���4014. https://doi.org/10.1080/07391102.2020.1773317 [DOI: 10.1080/07391102.2020.1773317]
  76. Wang J, Miao Y (2020) Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): enhanced sampling and free energy and kinetics calculations of peptide binding. J Chem Phys 153:154109. https://doi.org/10.1063/5.0021399 [DOI: 10.1063/5.0021399]
  77. Pawnikar S, Miao Y (2022) Mechanism of peptide agonist binding in CXCR4 Chemokine receptor. Front Mol Biosci 9:821055. https://doi.org/10.3389/fmolb.2022.821055 [DOI: 10.3389/fmolb.2022.821055]
  78. Wang J, Miao Y (2022) Protein���protein interaction-Gaussian Accelerated Molecular Dynamics (PPI-GaMD): characterization of protein binding thermodynamics and kinetics. J Chem Theory Comput 18:1275���1285. https://doi.org/10.1021/acs.jctc.1c00974 [DOI: 10.1021/acs.jctc.1c00974]
  79. Miao Y, McCammon JA (2018) Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proc Natl Acad Sci 115:3036���3041. https://doi.org/10.1073/pnas.1800756115 [DOI: 10.1073/pnas.1800756115]
  80. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603. https://doi.org/10.1103/PhysRevLett.100.020603 [DOI: 10.1103/PhysRevLett.100.020603]
  81. Dama JF, Rotskoff G, Parrinello M, Voth GA (2014) Transition-tempered metadynamics: robust, convergent metadynamics via on-the-fly transition barrier estimation. J Chem Theory Comput 10:3626���3633. https://doi.org/10.1021/ct500441q [DOI: 10.1021/ct500441q]
  82. Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comput Biol 8:e1002649. https://doi.org/10.1371/journal.pcbi.1002649 [DOI: 10.1371/journal.pcbi.1002649]
  83. Wang J, Ishchenko A, Zhang W et al (2022) A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein���protein and protein���ligand binding potencies. Sci Rep 12:2024. https://doi.org/10.1038/s41598-022-05875-8 [DOI: 10.1038/s41598-022-05875-8]
  84. Barducci A, Bonomi M, Prakash MK, Parrinello M (2013) Free-energy landscape of protein oligomerization from atomistic simulations. Proc Natl Acad Sci 110. https://doi.org/10.1073/pnas.1320077110
  85. della Longa S, Arcovito A (2016) A dynamic picture of the early events in Nociceptin binding to the NOP receptor by metadynamics. Biophys J 111:1203���1213. https://doi.org/10.1016/j.bpj.2016.07.004 [DOI: 10.1016/j.bpj.2016.07.004]
  86. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 25:1605���1612. https://doi.org/10.1002/jcc.20084 [DOI: 10.1002/jcc.20084]

MeSH Term

Molecular Dynamics Simulation
Molecular Docking Simulation
Proteins
Protein Binding
Protein Interaction Mapping
Protein Conformation
Humans
Software
Computational Biology

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0MolecularPPIinteractionsPPIscanproteinsamplingDynamicsMDstrategiesinterfacesstructuraldatasilicomodelingseveralmethodsprotein-proteinstructuredynamicsdockingProtein���proteinConcertedcellcomponentsformbasisbiologicalprocessesProtein-proteinconstitutetremendouspartinteractionnetworkDeeperinsighthelpusbetterunderstandnumerousdiseasesleaddevelopmentnewdiagnostictherapeuticrecentlyconsideredundruggableHowevernowbelievedcontain"hotspots"targetedsmallmoleculesstrategyrequirehigh-qualitydifficultobtainexperimentallyThereforecomplementalternativevitroapproachescomputationalanalyzingbindingpartnersdimer/oligomermajorproblempredictionassembliesobtainingsufficientOnetakeflexibilityeffectsenvironmentaccountwholeassociationprocessplaincomputationallyexpensiveharnessmethodstudiesmaintainingreasonableuseresourceschapterreviewsknownapplicationsinvestigationworkflowsSimulationsProtein-ProteinDockingCG-MDCoarse-grainingEnhancedGaussian-acceleratedMetadynamics

Similar Articles

Cited By

No available data.